TY - JOUR
T1 - Fourier transform infrared spectroscopic identification of gel phase domains in reconstituted phosphilipid vesicles containing Ca2+-ATPase
AU - Jaworsky, Markian
AU - Mendelsohn, Richard
N1 - Funding Information:
T~s work was supported by a grant (GM 29864) from the N~ionM Institu~s of Heath to RM. Further suppo~ was prodded by the Busch bequest to Rutgers Univerfity.
PY - 1986/9/11
Y1 - 1986/9/11
N2 - Ca2+-ATPase from rabbit sarcoplasmic reticulum has been isolated, purified, and reconstituted into lipid environments containing as primary components 1,2-dielaidoylphosphatidylcholine (DEPC) and acyl-chain perdeuterated 1,2-dimyristoylphosphatidylcholine (DMPC-d54). Differential scanning calorimetry (DSC) has been used to elucidate the phase behavior of this lipid pair while Fourier transform infrared spectroscopy (FT-IR) has been used to monitor the state of each lipid component in the presence of protein. The lipid mixture shows gel state miscibility over at least most of the composition range, a result in good accord with Van Dijck et al. (Biochim. Biophys. Acta 470, 58-69 (1977)), for the binary mixture with proteated DMPC. Acyl chain perdeuteration thus does not greatly alter the miscibility properties of the lipid pair. Reconstitution of Ca2+-ATPase with this lipid pair proceeds with moderate efficiency. Up to 80% of the endogenous lipid can be replaced depending on the lipid composition. Unusual composition-dependent protein-induced effects on lipid melting properties are noticed. At low levels of DMPC-d54, both the DEPC and DMPC-d54 components have their melting processes broadened and shifted to lower temperatures, compared with binary lipid mixtures of the same composition. This suggests that protein perturbs both lipids in similar fashion. At high levels of DMPC-d54, the DEPC component exhibits a highly cooperative melting process at temperatures close to that for pure DEPC. This strongly indicates that domains of DEPC are present (at least at low temperatures) in the bilayer, and that Ca2+-ATPase is excluded from these domains. The protein thus exhibits preferential interaction with the DMPC-d54 component. This work demonstrates the utility of FT-IR for identification of the molecular origin of particular domains in reasonably complex lipid mixtures. The relevance of this work to native membrane systems where lipid domains have been observed by several groups is discussed.
AB - Ca2+-ATPase from rabbit sarcoplasmic reticulum has been isolated, purified, and reconstituted into lipid environments containing as primary components 1,2-dielaidoylphosphatidylcholine (DEPC) and acyl-chain perdeuterated 1,2-dimyristoylphosphatidylcholine (DMPC-d54). Differential scanning calorimetry (DSC) has been used to elucidate the phase behavior of this lipid pair while Fourier transform infrared spectroscopy (FT-IR) has been used to monitor the state of each lipid component in the presence of protein. The lipid mixture shows gel state miscibility over at least most of the composition range, a result in good accord with Van Dijck et al. (Biochim. Biophys. Acta 470, 58-69 (1977)), for the binary mixture with proteated DMPC. Acyl chain perdeuteration thus does not greatly alter the miscibility properties of the lipid pair. Reconstitution of Ca2+-ATPase with this lipid pair proceeds with moderate efficiency. Up to 80% of the endogenous lipid can be replaced depending on the lipid composition. Unusual composition-dependent protein-induced effects on lipid melting properties are noticed. At low levels of DMPC-d54, both the DEPC and DMPC-d54 components have their melting processes broadened and shifted to lower temperatures, compared with binary lipid mixtures of the same composition. This suggests that protein perturbs both lipids in similar fashion. At high levels of DMPC-d54, the DEPC component exhibits a highly cooperative melting process at temperatures close to that for pure DEPC. This strongly indicates that domains of DEPC are present (at least at low temperatures) in the bilayer, and that Ca2+-ATPase is excluded from these domains. The protein thus exhibits preferential interaction with the DMPC-d54 component. This work demonstrates the utility of FT-IR for identification of the molecular origin of particular domains in reasonably complex lipid mixtures. The relevance of this work to native membrane systems where lipid domains have been observed by several groups is discussed.
KW - (Rabbit skeletal muscle)
KW - Ca-ATPase
KW - Differential scanning calorimetry
KW - Fourier transform
KW - Infrared spectroscopy
KW - Membrane reconstitution
KW - Phase domain
UR - http://www.scopus.com/inward/record.url?scp=0023047012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023047012&partnerID=8YFLogxK
U2 - 10.1016/0005-2736(86)90546-8
DO - 10.1016/0005-2736(86)90546-8
M3 - Article
C2 - 2943318
AN - SCOPUS:0023047012
SN - 0005-2736
VL - 860
SP - 491
EP - 502
JO - BBA - Biomembranes
JF - BBA - Biomembranes
IS - 3
ER -