Abstract
Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.
Original language | English (US) |
---|---|
Article number | 7018 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | International journal of molecular sciences |
Volume | 21 |
Issue number | 19 |
DOIs | |
State | Published - Oct 1 2020 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry
Keywords
- HNK-1
- Mimetic
- Neuritogenesis
- Neuronal survival
- Small organic compounds