Further studies on the increase in drug-metabolizing capacity adjacent to intrahepatic Morris hepatomas

Lester G. Sultatos, Dai K. Liu, Elliot S. Vesell

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Microsomal cytochrome P-450 content was higher in histologically non-tumorous liver adjacent to intrahepatically implanted Morris hepatomas 5123D or 7795 than in histologically normal liver far removed from each tumor. Vmax values for microsomal benzo[a]pyrene monooxygenase activity and cyclophosphamide activation were also significantly higher in tumor-adjacent liver than in normal liver far removed from tumor. Km values of these reactions were unchanged. After intrahepatic implantation, inert spheres of several different materials produced no regional differences in hepatic microsomal cytochrome P-450 content. Both intrahepatic Morris hepatomas exhibited markedly reduced cytochrome P-450 content and benzo[a]pyrene monooxygenase activity. Cyclophosphamide biotransformation could not be detected in microsomes from either Morris hepatoma. Similar recoveries from microsomes of far-removed and tumor-adjacent liver indicated that differences between these regions in drug-metabolizing activity could not be attributed to different stabilities or sedimenting properties of their microsomes. Although microsomal recovery was significantly less from hepatomas than from far-removed or tumor-adjacent liver, this loss of tumor microsomes accounted for only a small part of the reductions in cytochrome P-450-mediated monooxygenases observed within tumors. Compared to control rats. tumor-bearing rats exhibited no change in hepatic drug-metabolizing capacity measured in vivo by hexobarbital sleeping times and antipyrine elimination rates. Phenobarbital (PB) pretreatment of tumor-bearing rats induced cytochrome P-450 to different extents within far-removed liver, tumoradjacent liver, and both hepatomas. The same differential inducibility occurred with PB pretreatment for cyclophosphamide activation. After PB induction, differences in drug-metabolizing activity between far-removed and tumor-adjacent liver disappeared; though induced, these activities remained lower in the hepatomas than in other regions. These changes in drug-metabolizing activity in both basal and PB-induced states of various hepatic regions were related to changes in cellularity of tumor-adjacent tissue. Hepatocellular nuclei prepared from tumor-containing liver were separated into diploid and tetraploid classes by sucrose density gradient centrifugation. Compared to far-removed liver, tumoradjacent liver contained significantly more diploid nuclei and less tetraploid nuclei.

Original languageEnglish (US)
Pages (from-to)971-978
Number of pages8
JournalBiochemical Pharmacology
Issue number9
StatePublished - May 1 1981
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Pharmacology


Dive into the research topics of 'Further studies on the increase in drug-metabolizing capacity adjacent to intrahepatic Morris hepatomas'. Together they form a unique fingerprint.

Cite this