TY - JOUR
T1 - Gene therapy of cystic fibrosis (CF) airways
T2 - A review emphasizing targeting with lactose
AU - Klink, Daniel T.
AU - Glick, Mary Catherine
AU - Scanlin, Thomas F.
N1 - Funding Information:
Supported in part by NIH DK55610 (TFS) and the Ter Meulen Fund Netherlands Royal Academy of Sciences (DTK). The authors gratefully acknowledge Kearston Ingraham and Ellie Patounas for assistance with the manuscript and all of the authors on our publications cited here.
PY - 2001/9/1
Y1 - 2001/9/1
N2 - Cystic fibrosis is a disease for which a number of Phase I clinical trials of gene therapy have been initiated. Several factors account for the high level of interest in a gene therapy approach to this disease. CF is the most common lethal inherited disease in Caucasian populations. The lung, the organ that is predominantly responsible for the morbidity and mortality in CF patients, is accessible by a non-invasive method, the inhalation of aerosols. The vectors employed in the Phase I trials have included recombinant adenoviruses, adeno-associated viruses and cationic lipids. While there have been some positive results, the success of the vectors until now has been limited by either immunogenicity or low efficiency. A more fundamental obstacle has been the absence of appropriate receptors on the apical surface of airway epithelial cells. Molecular conjugates with carbohydrate substitution to provide targeting offer several potential advantages. Lactosylated polylysine in which 40% of the lysines have been substituted with lactose has been shown to provide a high efficiency of transfection in primary cultures of CF airway epithelial cells. Other important features include a relatively low immunogenicity and cytotoxicity. Most importantly, the lactosylated polylysine was demonstrated to give nuclear localization in CF airway epithelial cells. Until now, most non-viral vectors did not have the capability to provide nuclear localization. These unique qualities provided by the lactosylation of non-viral vectors, such as polylysine may help to advance the development of molecular conjugates sufficiently to warrant their use in future clinical trials for the gene therapy of inherited diseases of the lung.
AB - Cystic fibrosis is a disease for which a number of Phase I clinical trials of gene therapy have been initiated. Several factors account for the high level of interest in a gene therapy approach to this disease. CF is the most common lethal inherited disease in Caucasian populations. The lung, the organ that is predominantly responsible for the morbidity and mortality in CF patients, is accessible by a non-invasive method, the inhalation of aerosols. The vectors employed in the Phase I trials have included recombinant adenoviruses, adeno-associated viruses and cationic lipids. While there have been some positive results, the success of the vectors until now has been limited by either immunogenicity or low efficiency. A more fundamental obstacle has been the absence of appropriate receptors on the apical surface of airway epithelial cells. Molecular conjugates with carbohydrate substitution to provide targeting offer several potential advantages. Lactosylated polylysine in which 40% of the lysines have been substituted with lactose has been shown to provide a high efficiency of transfection in primary cultures of CF airway epithelial cells. Other important features include a relatively low immunogenicity and cytotoxicity. Most importantly, the lactosylated polylysine was demonstrated to give nuclear localization in CF airway epithelial cells. Until now, most non-viral vectors did not have the capability to provide nuclear localization. These unique qualities provided by the lactosylation of non-viral vectors, such as polylysine may help to advance the development of molecular conjugates sufficiently to warrant their use in future clinical trials for the gene therapy of inherited diseases of the lung.
KW - Cystic fibrosis
KW - Cystic fibrosis airway epithelial cells
KW - Gene therapy
KW - Gene transfer
KW - Lactosylated poly-L-lysine
KW - Non-viral vector
KW - Nuclear translocation
UR - http://www.scopus.com/inward/record.url?scp=0035470184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035470184&partnerID=8YFLogxK
U2 - 10.1023/A:1020879524587
DO - 10.1023/A:1020879524587
M3 - Article
C2 - 12386459
AN - SCOPUS:0035470184
SN - 0282-0080
VL - 18
SP - 731
EP - 740
JO - Glycoconjugate Journal
JF - Glycoconjugate Journal
IS - 9
ER -