TY - JOUR
T1 - General control nonderepressible 2 deletion predisposes to asparaginase-associated pancreatitis in mice
AU - Phillipson-Weiner, Lindsey
AU - Mirek, Emily T.
AU - Wang, Yongping
AU - McAuliffe, W. Geoffrey
AU - Wek, Ronald C.
AU - Anthony, Tracy G.
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Treatment with the antileukemic agent asparaginase can induce acute pancreatitis, but the pathophysiology remains obscure. In the liver of mice, eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2) is essential for mitigating metabolic stress caused by asparaginase. We determined the consequences of asparaginase treatment on the pancreata of wild-type (WT, GCN2-intact) and GCN2-deleted (ΔGcn2) mice. Mean pancreas weights in ΔGcn2 mice treated with asparaginase for 8 days were increased (P < 0.05) above all other groups. Histological examination revealed acinar cell swelling and altered staining of zymogen granules in ΔGcn2, but not WT, mice. Oil Red O staining and measurement of pancreas triglycerides excluded lipid accumulation as a contributor to acini appearance. Instead, transmission electron microscopy revealed dilatation of the endoplasmic reticulum (ER) and accumulation of autophagic vacuoles in the pancreas of ΔGcn2 mice treated with asparaginase. Consistent with the idea that loss of GCN2 in a pancreas exposed to asparaginase induced ER stress, phosphorylation of protein kinase R-like ER kinase (PERK) and its substrate eIF2 was increased in the pancreas of asparaginase-treated ΔGcn2 mice. In addition, mRNA expression of PERK target genes, activating transcription factors 4, 3, and 6 (Atf4, Atf3, and Atf6), fibroblast growth factor 21 (Fgf21), heat shock 70-kDa protein 5 (Hspa5), and spliced Xbp1 (sXbp1), as well as pancreas mass, was elevated in the pancreas of asparaginase-treated ΔGcn2 mice. Furthermore, genetic markers of oxidative stress [sirtuin (Sirt1)], inflammation [tumor necrosis factor-α (Tnfα)], and pancreatic injury [pancreatitis-associated protein (Pap)] were elevated in asparaginase-treated ΔGcn2, but not WT, mice. These data indicate that loss of GCN2 predisposes the exocrine pancreas to a maladaptive ER stress response and autophagy during asparaginase treatment and represent a genetic basis for development of asparaginase-associated pancreatitis.
AB - Treatment with the antileukemic agent asparaginase can induce acute pancreatitis, but the pathophysiology remains obscure. In the liver of mice, eukaryotic initiation factor 2 (eIF2) kinase general control nonderepressible 2 (GCN2) is essential for mitigating metabolic stress caused by asparaginase. We determined the consequences of asparaginase treatment on the pancreata of wild-type (WT, GCN2-intact) and GCN2-deleted (ΔGcn2) mice. Mean pancreas weights in ΔGcn2 mice treated with asparaginase for 8 days were increased (P < 0.05) above all other groups. Histological examination revealed acinar cell swelling and altered staining of zymogen granules in ΔGcn2, but not WT, mice. Oil Red O staining and measurement of pancreas triglycerides excluded lipid accumulation as a contributor to acini appearance. Instead, transmission electron microscopy revealed dilatation of the endoplasmic reticulum (ER) and accumulation of autophagic vacuoles in the pancreas of ΔGcn2 mice treated with asparaginase. Consistent with the idea that loss of GCN2 in a pancreas exposed to asparaginase induced ER stress, phosphorylation of protein kinase R-like ER kinase (PERK) and its substrate eIF2 was increased in the pancreas of asparaginase-treated ΔGcn2 mice. In addition, mRNA expression of PERK target genes, activating transcription factors 4, 3, and 6 (Atf4, Atf3, and Atf6), fibroblast growth factor 21 (Fgf21), heat shock 70-kDa protein 5 (Hspa5), and spliced Xbp1 (sXbp1), as well as pancreas mass, was elevated in the pancreas of asparaginase-treated ΔGcn2 mice. Furthermore, genetic markers of oxidative stress [sirtuin (Sirt1)], inflammation [tumor necrosis factor-α (Tnfα)], and pancreatic injury [pancreatitis-associated protein (Pap)] were elevated in asparaginase-treated ΔGcn2, but not WT, mice. These data indicate that loss of GCN2 predisposes the exocrine pancreas to a maladaptive ER stress response and autophagy during asparaginase treatment and represent a genetic basis for development of asparaginase-associated pancreatitis.
KW - Amino acid response
KW - Endoplasmic reticulum stress
KW - Eukaryotic initiation factor 2
KW - Protein kinase R-like ER kinase
KW - Unfolded protein response
UR - http://www.scopus.com/inward/record.url?scp=84984629302&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84984629302&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00052.2016
DO - 10.1152/ajpgi.00052.2016
M3 - Article
C2 - 26968207
AN - SCOPUS:84984629302
SN - 0193-1857
VL - 310
SP - G1061-G1070
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 11
ER -