Generalized geometric programming for rate allocation in consensus

Ryan Pilgrim, Junan Zhu, Dror Baron, Waheed U. Bajwa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Distributed averaging, or distributed average consensus, is a common method for computing the sample mean of the data dispersed among the nodes of a network in a decentralized manner. By iteratively exchanging messages with neighbors, the nodes of the network can converge to an agreement on the sample mean of their initial states. In real-world scenarios, these messages are subject to bandwidth and power constraints, which motivates the design of a lossy compression strategy. Few prior works consider the rate allocation problem from the perspective of constrained optimization, which provides a principled method for the design of lossy compression schemes, allows for the relaxation of certain assumptions, and offers performance guarantees. We show for Gaussian-distributed initial states with entropy-coded scalar quantization and vector quantization that the coding rates for distributed averaging can be optimized through generalized geometric programming. In the absence of side information from past states, this approach finds a rate allocation over nodes and iterations that minimizes the aggregate coding rate required to achieve a target mean square error within a finite run time. Our rate allocation is compared to some of the prior art through numerical simulations. The results motivate the incorporation of side-information through differential or predictive coding to improve rate-distortion performance.

Original languageEnglish (US)
Title of host publication55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages374-381
Number of pages8
ISBN (Electronic)9781538632666
DOIs
StatePublished - Jul 1 2017
Event55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017 - Monticello, United States
Duration: Oct 3 2017Oct 6 2017

Publication series

Name55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
Volume2018-January

Other

Other55th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2017
Country/TerritoryUnited States
CityMonticello
Period10/3/1710/6/17

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Energy Engineering and Power Technology
  • Control and Optimization

Keywords

  • Compression
  • consensus
  • geometric programming
  • optimization
  • source coding

Fingerprint

Dive into the research topics of 'Generalized geometric programming for rate allocation in consensus'. Together they form a unique fingerprint.

Cite this