Genetic and Phytochemical Characterization of Lettuce Flavonoid Biosynthesis Mutants

Csanad Gurdon, Alexander Poulev, Isabel Armas, Shukhratdzhon Satorov, Meg Tsai, Ilya Raskin

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We previously developed red lettuce (Lactuca sativa L.) cultivars with high flavonoid and phenolic acid content and demonstrated their anti-diabetic effect. Here we report on developing three fertile and true-breeding lettuce lines enriched with flavonoids with reported beneficial health effects. These lines were identified in a segregating population of EMS-mutagenized red lettuce and characterized biochemically and genetically. Change in red coloration was used as a visual indicator of a mutation in a flavonoid pathway gene, leading to accumulation of flavonoid precursors of red anthocyanins. Pink-green kaempferol overproducing kfoA and kfoB mutants accumulated kaempferol to 0.6–1% of their dry weight, higher than in any vegetable reported. The yellow-green naringenin chalcone overproducing mutant (nco) accumulated naringenin chalcone, not previously reported in lettuce, to 1% dry weight, a level only observed in tomato peel. Kfo plants carried a mutation in the FLAVONOID-3′ HYDROXYLASE (F3′H) gene, nco in CHALCONE ISOMERASE (CHI). This work demonstrates how non-GMO approaches can transform a common crop plant into a functional food with possible health benefits.

Original languageEnglish (US)
Article number3305
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Genetic and Phytochemical Characterization of Lettuce Flavonoid Biosynthesis Mutants'. Together they form a unique fingerprint.

Cite this