GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction

Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

95 Scopus citations

Abstract

Recently many efforts have been devoted to applying graph neural networks (GNNs) to molecular property prediction which is a fundamental task for computational drug and material discovery. One of major obstacles to hinder the successful prediction of molecular property by GNNs is the scarcity of labeled data. Though graph contrastive learning (GCL) methods have achieved extraordinary performance with insufficient labeled data, most focused on designing data augmentation schemes for general graphs. However, the fundamental property of a molecule could be altered with the augmentation method (like random perturbation) on molecular graphs. Whereas, the critical geometric information of molecules remains rarely explored under the current GNN and GCL architectures. To this end, we propose a novel graph contrastive learning method utilizing the geometry of the molecule across 2D and 3D views, which is named GeomGCL. Specifically, we first devise a dual-view geometric message passing network (GeomMPNN) to adaptively leverage the rich information of both 2D and 3D graphs of a molecule. The incorporation of geometric properties at different levels can greatly facilitate the molecular representation learning. Then a novel geometric graph contrastive scheme is designed to make both geometric views collaboratively supervise each other to improve the generalization ability of GeomMPNN. We evaluate GeomGCL on various downstream property prediction tasks via a finetune process. Experimental results on seven real-life molecular datasets demonstrate the effectiveness of our proposed GeomGCL against state-of-the-art baselines.

Original languageEnglish (US)
Title of host publicationAAAI-22 Technical Tracks 4
PublisherAssociation for the Advancement of Artificial Intelligence
Pages4541-4549
Number of pages9
ISBN (Electronic)1577358767, 9781577358763
DOIs
StatePublished - Jun 30 2022
Event36th AAAI Conference on Artificial Intelligence, AAAI 2022 - Virtual, Online
Duration: Feb 22 2022Mar 1 2022

Publication series

NameProceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022
Volume36

Conference

Conference36th AAAI Conference on Artificial Intelligence, AAAI 2022
CityVirtual, Online
Period2/22/223/1/22

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction'. Together they form a unique fingerprint.

Cite this