Global protein synthesis in human trophoblast is resistant to inhibition by hypoxia

S. F. Williams, E. Fik, S. Zamudio, N. P. Illsley

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Placental growth and function depend on syncytial cell processes which require the continuing synthesis of cellular proteins. The substantial energy demands of protein synthesis are met primarily from oxidative metabolism. Although the responses of individual proteins produced by the syncytiotrophoblast to oxygen deprivation have been investigated previously, there is no information available on global protein synthesis in syncytiotrophoblast under conditions of hypoxia. These studies were designed to test the hypothesis that syncytial protein synthesis is decreased in a dose-dependent manner by hypoxia. Experiments were performed to measure amino acid incorporation into proteins in primary syncytiotrophoblast cells exposed to oxygen concentrations ranging from 0 to 10%. Compared to cells exposed to normoxia (10% O 2), no changes were observed following exposure to 5% or 3% O 2, but after exposure to 1% O 2, protein synthesis after 24 and 48 h decreased by 24% and 23% and with exposure to 0% O 2, by 65% and 50%. As a consequence of these results, we hypothesized that global protein synthesis in conditions of severe hypoxia was being supported by glucose metabolism. Additional experiments were performed therefore to examine the role of glucose in supporting protein synthesis. These demonstrated that at each oxygen concentration there was a significant, decreasing linear trend in protein synthesis as glucose concentration was reduced. Under conditions of near-anoxia and in the absence of glucose, protein synthesis was reduced by >85%. Even under normoxic conditions (defined as 10% O 2) and in the presence of oxidative substrates, reductions in glucose were accompanied by decreases in protein synthesis. These experiments demonstrate that syncytiotrophoblast cells are resistant to reductions in protein synthesis at O 2 concentrations greater than 1%. This could be explained by our finding that a significant fraction of protein synthesis in the syncytiotrophoblast is sustained by glycolytic metabolism. This suggests that with increasing degrees of chronic hypoxia there is a shift from oxidative to glycolytic pathways, allowing a substantial degree of protein synthesis to be maintained.

Original languageEnglish (US)
Pages (from-to)31-38
Number of pages8
Issue number1
StatePublished - Jan 2012

All Science Journal Classification (ASJC) codes

  • Reproductive Medicine
  • Obstetrics and Gynecology
  • Developmental Biology


  • Glucose
  • Human
  • Hypoxia
  • Protein synthesis
  • Trophoblast


Dive into the research topics of 'Global protein synthesis in human trophoblast is resistant to inhibition by hypoxia'. Together they form a unique fingerprint.

Cite this