Abstract
In this paper, we continue our study [B. Dodson, A. Soffer, and T. Spencer, J. Stat. Phys. 180, 910 (2020)] of the nonlinear Schrödinger equation (NLS) with bounded initial data which do not vanish at infinity. Local well-posedness on was proved for real analytic data. Here, we prove global well-posedness for the 1D NLS with initial data lying in Lp for any 2 < p < ∞, provided that the initial data are sufficiently smooth. We do not use the complete integrability of the cubic NLS.
Original language | English (US) |
---|---|
Article number | 071507 |
Journal | Journal of Mathematical Physics |
Volume | 62 |
Issue number | 7 |
DOIs | |
State | Published - Jul 1 2021 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics