TY - JOUR
T1 - Goldilocks Zone of Ictal Onset
T2 - Partially Recovered Synapses Provide the Kindling to Fuel Ictal Activity
AU - Subramanian, Deepak
AU - Santhakumar, Viji
N1 - Publisher Copyright:
© The Author(s) 2019.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - A Proposed Mechanism for Spontaneous Transitions Between Interictal and Ictal Activity Jacob T, Lillis KP, Wang Z, Swiercz W, Rahmati N, Staley KJ. J Neurosci. 2019;39(3):557-575. doi:10.1523/JNEUROSCI.0719-17.2018. Epub 2018 Nov 16. PMID: 30446533 Epileptic networks are characterized by 2 outputs: brief interictal spikes and rarer, more prolonged seizures. Although either output state is readily modeled in silico and induced experimentally, the transition mechanisms are unknown, in part because no models exhibit both output states spontaneously. In silico, small-world neural networks were built using single-compartment neurons whose physiological parameters were derived from dual whole-cell recordings of pyramidal cells in organotypic hippocampal slice cultures that were generating spontaneous seizure-like activity. In silico, neurons were connected by abundant local synapses and rare long-distance synapses. Activity-dependent synaptic depression and gradual recovery delimited synchronous activity. Full synaptic recovery engendered interictal population spikes that spread via long-distance synapses. When synaptic recovery was incomplete, postsynaptic neurons required coincident activation of multiple presynaptic terminals to reach firing threshold. Only local connections were sufficiently dense to spread activity under these conditions. This coalesced network activity into traveling waves whose velocity varied with synaptic recovery. Seizures were comprised of sustained traveling waves that were similar to those recorded during experimental and human neocortical seizures. Sustained traveling waves occurred only when wave velocity, network dimensions, and the rate of synaptic recovery enabled wave reentry into previously depressed areas at precisely ictogenic levels of synaptic recovery. Wide-field, cellular resolution GCamP7b calcium imaging demonstrated similar initial patterns of activation in the hippocampus, although the anatomical distribution of traveling waves of synaptic activation was altered by the pattern of synaptic connectivity in the organotypic hippocampal cultures.
AB - A Proposed Mechanism for Spontaneous Transitions Between Interictal and Ictal Activity Jacob T, Lillis KP, Wang Z, Swiercz W, Rahmati N, Staley KJ. J Neurosci. 2019;39(3):557-575. doi:10.1523/JNEUROSCI.0719-17.2018. Epub 2018 Nov 16. PMID: 30446533 Epileptic networks are characterized by 2 outputs: brief interictal spikes and rarer, more prolonged seizures. Although either output state is readily modeled in silico and induced experimentally, the transition mechanisms are unknown, in part because no models exhibit both output states spontaneously. In silico, small-world neural networks were built using single-compartment neurons whose physiological parameters were derived from dual whole-cell recordings of pyramidal cells in organotypic hippocampal slice cultures that were generating spontaneous seizure-like activity. In silico, neurons were connected by abundant local synapses and rare long-distance synapses. Activity-dependent synaptic depression and gradual recovery delimited synchronous activity. Full synaptic recovery engendered interictal population spikes that spread via long-distance synapses. When synaptic recovery was incomplete, postsynaptic neurons required coincident activation of multiple presynaptic terminals to reach firing threshold. Only local connections were sufficiently dense to spread activity under these conditions. This coalesced network activity into traveling waves whose velocity varied with synaptic recovery. Seizures were comprised of sustained traveling waves that were similar to those recorded during experimental and human neocortical seizures. Sustained traveling waves occurred only when wave velocity, network dimensions, and the rate of synaptic recovery enabled wave reentry into previously depressed areas at precisely ictogenic levels of synaptic recovery. Wide-field, cellular resolution GCamP7b calcium imaging demonstrated similar initial patterns of activation in the hippocampus, although the anatomical distribution of traveling waves of synaptic activation was altered by the pattern of synaptic connectivity in the organotypic hippocampal cultures.
UR - http://www.scopus.com/inward/record.url?scp=85071370430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85071370430&partnerID=8YFLogxK
U2 - 10.1177/1535759719869670
DO - 10.1177/1535759719869670
M3 - Comment/debate
AN - SCOPUS:85071370430
SN - 1535-7597
VL - 19
SP - 330
EP - 332
JO - Epilepsy Currents
JF - Epilepsy Currents
IS - 5
ER -