Gossiping in groups: Distributed averaging over the wireless medium

Matthew Nokleby, Waheed U. Bajwa, Robert Calderbank, Behnaam Aazhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

We present an approach to gossip algorithms tailored to the practical considerations of wireless communications. Traditional gossip algorithms operate via the pairwise exchange of estimates, which fails to capture the broadcast and superposition nature of the wireless medium. Adapting the virtual full-duplex framework of Guo and Zhang, we construct a communications scheme in which each node can broadcast its estimate to its neighbors while simultaneously receiving its neighbors' estimates. This full-duplex scheme gives rise to group gossip, a more flexible family of gossip algorithms built on multilateral, rather than pairwise, exchanges. Our approach obviates the need for orthogonalization or medium access; only local information and synchronization are necessary. Additionally, group gossip has better convergence properties than does randomized gossip. Group gossip permits a tighter bound on the convergence speed than randomized gossip, and in general the upper bound on the convergence time is at most one-third that of randomized gossip.

Original languageEnglish (US)
Title of host publication2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Pages1242-1249
Number of pages8
DOIs
StatePublished - 2011
Event2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011 - Monticello, IL, United States
Duration: Sep 28 2011Sep 30 2011

Publication series

Name2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011

Other

Other2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011
Country/TerritoryUnited States
CityMonticello, IL
Period9/28/119/30/11

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Gossiping in groups: Distributed averaging over the wireless medium'. Together they form a unique fingerprint.

Cite this