Abstract
Protein subcellular localization is defined as predicting the functioning location of a given protein in the cell. It is considered an important step towards protein function prediction and drug design. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve protein subcellular localization prediction performance. However, relying solely on GO, this problem remains unsolved. At the same time, the impact of other sources of features especially evolutionary-based features has not been explored adequately for this task. In this study, we aim to extract discriminative evolutionary features to tackle this problem. To do this, we propose two segmentation based feature extraction methods to explore potential local evolutionary-based information for Gram-positive and Gram-negative subcellular localizations. We will show that by applying a Support Vector Machine (SVM) classifier to our extracted features, we are able to enhance Gram-positive and Gram-negative subcellular localization prediction accuracies by up to 6.4% better than previous studies including the studies that used GO for feature extraction.
Original language | English (US) |
---|---|
Pages (from-to) | 284-294 |
Number of pages | 11 |
Journal | Journal of Theoretical Biology |
Volume | 364 |
DOIs | |
State | Published - Jan 7 2015 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics
Keywords
- Evolutionary-based features
- Segmented autocorrelation
- Segmented distribution
- Support Vector Machine (SVM)