TY - JOUR
T1 - HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression
AU - Li, Xiaolei
AU - Su, Xiao
AU - Liu, Rui
AU - Pan, Yongsha
AU - Fang, Jiankai
AU - Cao, Lijuan
AU - Feng, Chao
AU - Shang, Qianwen
AU - Chen, Yongjing
AU - Shao, Changshun
AU - Shi, Yufang
N1 - Funding Information:
Funding This work was supported by grants from the National Natural Science Foundation of China (81930085, 81672797, and 81530043), National Key R&D Program of China (2018YFA0107500), State Key Laboratory of Radiation Medicine and Protection, Soochow University (GZN1201804 and GZN1201903), and The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB180005).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/3/10
Y1 - 2021/3/10
N2 - Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
AB - Despite the widespread use of the blockade of immune checkpoints, for a significant number of cancer patients, these therapies have proven ineffective, presumably due to the immunosuppressive nature of the tumor microenvironment (TME). Critical drivers of immune escape in the TME include tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs), which not only mediate immune suppression, but also facilitate metastatic dissemination and impart resistance to immunotherapies. Thus, strategies that convert them into tumor fighters may offer great therapeutic potential. In this study, we evaluated whether pharmacologic modulation of macrophage phenotype by HDAC inhibitors (HDACi) could produce an anti-tumor effect. We demonstrated that low-dose HDACi trichostatin-A (TSA) markedly reshaped the tumor immune microenvironment by modulating the suppressive activity of infiltrating macrophages and inhibiting the recruitment of MDSCs in various tumors. These actions, in turn, augmented anti-tumor immune responses and further enhanced anti-tumor effects of immunotherapies. HDAC inhibition, however, also upregulated PD-L1, thereby limiting the beneficial therapeutic effects. Indeed, combining low-dose TSA with anti-PD-L1 in this model significantly enhanced the durability of tumor reduction and prolonged survival of tumor-bearing mice, compared with the effect of either treatment alone. These data introduce HDAC inhibition as a potential means to harness the anti-tumor potential of macrophages in cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=85100822345&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100822345&partnerID=8YFLogxK
U2 - 10.1038/s41388-020-01636-x
DO - 10.1038/s41388-020-01636-x
M3 - Article
C2 - 33564072
AN - SCOPUS:85100822345
VL - 40
SP - 1836
EP - 1850
JO - Oncogene
JF - Oncogene
SN - 0950-9232
IS - 10
ER -