Hierarchical matching network for crime classification

Pengfei Wang, Ze Yang, Yu Fan, Yongfeng Zhang, Shuzi Niu, Jiafeng Guo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

Automatic crime classification is a fundamental task in the legal field. Given the fact descriptions, judges first determine the relevant violated laws, and then the articles. As laws and articles are grouped into a tree-shaped hierarchy (i.e., laws as parent labels, articles as children labels), this task can be naturally formalized as a two layers' hierarchical multi-label classification problem. Generally, the label semantics (i.e., definition of articles) and the hierarchical structure are two informative properties for judges to make a correct decision. However, most previous methods usually ignore the label structure and feed all labels into a flat classification framework, or neglect the label semantics and only utilize fact descriptions for crime classification, thus the performance may be limited. In this paper, we formalize crime classification problem into a matching task to address these issues. We name our model as Hierarchical Matching Network (HMN for short). Based on the tree hierarchy, HMN explicitly decomposes the semantics of children labels into the residual and alignment components. The residual components keep the unique characteristics of each individual children label, while the alignment components capture the common semantics among sibling children labels, which are further aggregated as the representation of their parent label. Finally, given a fact description, a co-attention metric is applied to effectively match the relevant laws and articles. Experiments on two real-world judicial datasets demonstrate that our model can significantly outperform the state-of-the-art methods.

Original languageEnglish (US)
Title of host publicationSIGIR 2019 - Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages325-334
Number of pages10
ISBN (Electronic)9781450361729
DOIs
StatePublished - Jul 18 2019
Event42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019 - Paris, France
Duration: Jul 21 2019Jul 25 2019

Publication series

NameSIGIR 2019 - Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019
CountryFrance
CityParis
Period7/21/197/25/19

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Applied Mathematics
  • Software

Keywords

  • Crime Classification
  • Hierarchical Matching Network
  • Hierarchical multi-label classification

Fingerprint Dive into the research topics of 'Hierarchical matching network for crime classification'. Together they form a unique fingerprint.

Cite this