TY - GEN
T1 - Hierarchical matching network for crime classification
AU - Wang, Pengfei
AU - Yang, Ze
AU - Fan, Yu
AU - Zhang, Yongfeng
AU - Niu, Shuzi
AU - Guo, Jiafeng
PY - 2019/7/18
Y1 - 2019/7/18
N2 - Automatic crime classification is a fundamental task in the legal field. Given the fact descriptions, judges first determine the relevant violated laws, and then the articles. As laws and articles are grouped into a tree-shaped hierarchy (i.e., laws as parent labels, articles as children labels), this task can be naturally formalized as a two layers' hierarchical multi-label classification problem. Generally, the label semantics (i.e., definition of articles) and the hierarchical structure are two informative properties for judges to make a correct decision. However, most previous methods usually ignore the label structure and feed all labels into a flat classification framework, or neglect the label semantics and only utilize fact descriptions for crime classification, thus the performance may be limited. In this paper, we formalize crime classification problem into a matching task to address these issues. We name our model as Hierarchical Matching Network (HMN for short). Based on the tree hierarchy, HMN explicitly decomposes the semantics of children labels into the residual and alignment components. The residual components keep the unique characteristics of each individual children label, while the alignment components capture the common semantics among sibling children labels, which are further aggregated as the representation of their parent label. Finally, given a fact description, a co-attention metric is applied to effectively match the relevant laws and articles. Experiments on two real-world judicial datasets demonstrate that our model can significantly outperform the state-of-the-art methods.
AB - Automatic crime classification is a fundamental task in the legal field. Given the fact descriptions, judges first determine the relevant violated laws, and then the articles. As laws and articles are grouped into a tree-shaped hierarchy (i.e., laws as parent labels, articles as children labels), this task can be naturally formalized as a two layers' hierarchical multi-label classification problem. Generally, the label semantics (i.e., definition of articles) and the hierarchical structure are two informative properties for judges to make a correct decision. However, most previous methods usually ignore the label structure and feed all labels into a flat classification framework, or neglect the label semantics and only utilize fact descriptions for crime classification, thus the performance may be limited. In this paper, we formalize crime classification problem into a matching task to address these issues. We name our model as Hierarchical Matching Network (HMN for short). Based on the tree hierarchy, HMN explicitly decomposes the semantics of children labels into the residual and alignment components. The residual components keep the unique characteristics of each individual children label, while the alignment components capture the common semantics among sibling children labels, which are further aggregated as the representation of their parent label. Finally, given a fact description, a co-attention metric is applied to effectively match the relevant laws and articles. Experiments on two real-world judicial datasets demonstrate that our model can significantly outperform the state-of-the-art methods.
KW - Crime Classification
KW - Hierarchical Matching Network
KW - Hierarchical multi-label classification
UR - http://www.scopus.com/inward/record.url?scp=85073808895&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073808895&partnerID=8YFLogxK
U2 - 10.1145/3331184.3331223
DO - 10.1145/3331184.3331223
M3 - Conference contribution
T3 - SIGIR 2019 - Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
SP - 325
EP - 334
BT - SIGIR 2019 - Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
PB - Association for Computing Machinery, Inc
T2 - 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019
Y2 - 21 July 2019 through 25 July 2019
ER -