High-fidelity structural analysis of a 10 mw offshore floating wind turbine rotor blade

Reza Yaghmaie, Onur Bilgen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This paper presents a comparison of low- and high-fidelity structural analyses of a 10 MW offshore floating wind turbine rotor blade. For low-fidelity analysis, BeamDyn as a part of the OpenFAST toolset is used. For high-fidelity analysis, the Toolkit for the Analysis of Composite Structures (TACS) finite element method is used. First, several numerical examples with reference solutions from the literature are investigated to compare the accuracy and efficiency of the low- and high-fidelity structural models. Next, the DTU 10 MW reference wind turbine blade is analyzed using both the low- and high-fidelity methods. The bending response of the blade is analyzed. The results show that the high-fidelity model agrees with low-fidelity results and reference solutions. The high-fidelity model represents the deformations more accurately than the low-fidelity model and therefore is appropriate for structural analysis of complex wind turbine blade shapes.

Original languageEnglish (US)
Title of host publicationDynamics, Vibration, and Control
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884553
DOIs
StatePublished - 2020
EventASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020 - Virtual, Online
Duration: Nov 16 2020Nov 19 2020

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
Volume7B-2020

Conference

ConferenceASME 2020 International Mechanical Engineering Congress and Exposition, IMECE 2020
CityVirtual, Online
Period11/16/2011/19/20

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Keywords

  • Beam element.
  • Nonlinear finite element analysis
  • Shell element
  • Structural modeling
  • Wind turbine

Fingerprint

Dive into the research topics of 'High-fidelity structural analysis of a 10 mw offshore floating wind turbine rotor blade'. Together they form a unique fingerprint.

Cite this