Higher Concentrations of Bacterial Enveloped Virus Phi6 Can Protect the Virus from Environmental Decay

Ronald Bangiyev, Maxim Chudaev, Donald W. Schaffner, Emanuel Goldman

Research output: Contribution to journalArticlepeer-review

11 Scopus citations


Phage Phi6 is an enveloped virus considered a possible nonpathogenic surrogate for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral pathogens in transmission studies. Larger input amounts of bacteriophage Phi6 are shown to delay and protect the phage from environmental decay, both when the phages are dried in plastic tubes and when they are stored in saline solution at 4°C. In contrast, when bacteriophage Phi6 is placed in LB (Luria-Bertani) growth medium (instead of saline) prior to placement on the plastic surface, the influence of the starting concentration on viral recovery is negligible. Protection is reflected in the phage half-lives at higher concentrations being longer than the half-lives at lower concentrations. Because experiments supporting the possibility of fomite transmission of SARS-CoV-2 and other viruses rely upon the survival of infectious virus following inoculation onto various surfaces, large initial amounts of input virus on a surface may generate artificially inflated survival times compared to realistic lower levels of virus that a subject would normally encounter. This is not only because there are extra half-lives to go through at higher concentrations but also because the half-lives themselves are extended at higher virus concentrations. It is important to design surface drying experiments for pathogens with realistic levels of input virus and to consider the role of the carrier and matrix if the results are to be clinically relevant. IMPORTANCE During the coronavirus disease 2019 (COVID-19) pandemic, much attention has been paid to the environmental decay of SARS-CoV-2 due to the proposed transmission of the virus via fomites. However, published experiments have commenced with inocula with very high virus titers, an experimental design not representative of real-life conditions. The study described here evaluated the impact of the initial virus titer on the environmental decay of an enveloped virus, using a nonpathogenic surrogate for the transmission of SARS-CoV-2, enveloped bacteriophage Phi6. We establish that higher concentrations of virus can protect the virus from environmental decay, depending on conditions. This has important implications for stability studies of SARS-CoV-2 and other viruses. Our results point to a limitation in the fundamental methodology that has been used to attribute fomite transmission for almost all respiratory viruses.

Original languageEnglish (US)
Pages (from-to)e0137121
JournalApplied and environmental microbiology
Issue number21
StatePublished - Oct 14 2021

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Food Science
  • Ecology
  • Applied Microbiology and Biotechnology


  • SARS-CoV-2
  • bacteriophage Phi6
  • fomite transmission


Dive into the research topics of 'Higher Concentrations of Bacterial Enveloped Virus Phi6 Can Protect the Virus from Environmental Decay'. Together they form a unique fingerprint.

Cite this