Abstract
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 103 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype.
Original language | English (US) |
---|---|
Article number | P04034 |
Journal | Journal of Instrumentation |
Volume | 18 |
Issue number | 4 |
DOIs | |
State | Published - Apr 1 2023 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Instrumentation
- Mathematical Physics
Keywords
- Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc)
- Noble liquid detectors (scintillation, ionization, double-phase
- Simulation methods and programs
- Time projection Chambers (TPC)