Abstract
Predisposition of synapses to undergo plastic changes can be dynamically adjusted according to the history of synaptic activity (i.e., synapses are metaplastic). In search of a molecular mechanism underlying metaplasticity, we investigated mice deficient in the glycoprotein tenascin-R (TNR), based on the observations that this mutant exhibits elevated basal excitatory synaptic transmission and reduced perisomatic GABAergic inhibition. TNR is a major extracellular matrix glycoprotein of the CNS and carries the HNK-1 carbohydrate (human natural killer cell glycan), which has been identified as the functional epitope mediating regulation of GABAergic transmission via GABAB receptors. Here, we used patch-clamp recordings in hippocampal slices to determine the critical levels of postsynaptic neuron depolarization necessary for induction of long-term potentiation (LTP) at CA3-CA1 synapses and found that deficiency in TNR leads to a metaplastic increase in the threshold for induction of LTP. Reconstitution of slices from TNR-deficient mice with an HNK-1 glycomimetic or pharmacological treatment with either a GABAA receptor agonist, a GABAB receptor antagonist, an L-type voltage-dependent Ca2+ channel blocker, or an inhibitor of protein serine/threonine phosphatases restored LTP to the levels seen in wild-type mice. We propose that a chain of events initiated by reduced GABAergic transmission and proceeding via Ca2+ entry into cells and elevated activity of phosphatases mediates homeostatic adjustment of hippocampal plasticity in the absence of TNR. These data uncover a novel mechanism by which an extracellular matrix molecule and its associated carbohydrate provide conditions beneficial for induction of LTP in the CA1 region of the hippocampus.
Original language | English (US) |
---|---|
Pages (from-to) | 6019-6028 |
Number of pages | 10 |
Journal | Journal of Neuroscience |
Volume | 27 |
Issue number | 22 |
DOIs | |
State | Published - May 30 2007 |
All Science Journal Classification (ASJC) codes
- General Neuroscience
Keywords
- CA1
- Extracellular matrix glycoprotein
- Hippocampus
- Knock-out mutant
- Long-term potentiation
- Metaplasticity
- Tenascin-R