Abstract
Induction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine.
Original language | English (US) |
---|---|
Article number | e01843-17 |
Journal | Journal of virology |
Volume | 92 |
Issue number | 8 |
DOIs | |
State | Published - Apr 1 2018 |
All Science Journal Classification (ASJC) codes
- Microbiology
- Immunology
- Insect Science
- Virology
Keywords
- Antibody
- Antigenicity
- Diversity
- Durability
- HIV-1
- Humoral immunity
- Vaccine