Abstract
We develop data-driven models to predict when a robot should feed during social dining scenarios. Being able to eat independently with friends and family is considered one of the most memorable and important activities for people with mobility limitations. While existing robotic systems for feeding people with mobility limitations focus on solitary dining, commensality, the act of eating together, is often the practice of choice. Sharing meals with others introduces the problem of socially appropriate bite timing for a robot, i.e. the appropriate timing for the robot to feed without disrupting the social dynamics of a shared meal. Our key insight is that bite timing strategies that take into account the delicate balance of social cues can lead to seamless interactions during robot-assisted feeding in a social dining scenario. We approach this problem by collecting a Human-Human Commensality Dataset (HHCD) containing 30 groups of three people eating together. We use this dataset to analyze human-human commensality behaviors and develop bite timing prediction models in social dining scenarios. We also transfer these models to human-robot commensality scenarios. Our user studies show that prediction improves when our algorithm uses multimodal social signaling cues between diners to model bite timing. The HHCD dataset, videos of user studies, and code are available at https://emprise.cs.cornell.edu/hrcom/.
Original language | English (US) |
---|---|
Pages (from-to) | 921-933 |
Number of pages | 13 |
Journal | Proceedings of Machine Learning Research |
Volume | 205 |
State | Published - 2023 |
Event | 6th Conference on Robot Learning, CoRL 2022 - Auckland, New Zealand Duration: Dec 14 2022 → Dec 18 2022 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability
Keywords
- Assistive Robotics
- Group Dynamics
- HRI
- Multimodal Learning