TY - JOUR
T1 - Identification of a new class of 5'-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria
AU - Bick, Julie Ann
AU - Dennis, Jonathan J.
AU - Zylstra, Gerben J.
AU - Nowack, Jason
AU - Leustek, Thomas
PY - 2000/1
Y1 - 2000/1
N2 - A gene was cloned from Burkholderia cepacia DBO1 that is homologous with Escherichia coli cysH encoding 3'-phosphoadenylylsulfate (PAPS) reductase. The B. cepacia gene is the most recent addition to a growing list of cysH homologs from a diverse group of sulfate-assimilating bacteria whose products show greater homology to plant 5'-adenylylsulfate (APS) reductase than they do to E. coli CysH. The evidence reported here shows that the cysH from one of the species, Pseudomonas aeruginosa, encodes APS reductase. It is able to complement an E. coli cysH mutant and a cysC mutant, indicating that the enzyme is able to bypass PAPS, synthesized by the cysC product. Insertional knockout mutation of P. aeruginosa cysH produced cysteine auxotrophy, indicating its role in sulfate assimilation. Purified P. aeruginosa CysH expressed as a His-tagged recombinant protein is able to reduce APS, but not PAPS. The enzyme has a specific activity of 5.8 μmol · min-1 · mg of protein-1 at pH 8.5 and 30°C with thioredoxin supplied as an electron donor. APS reductase activity was detected in several bacterial species from which the novel type of cysH has been cloned, indicating that this enzyme may be widespread. Although an APS reductase from dissimilatory sulfate-reducing bacteria is known, it shows no structural or sequence homology with the assimilatory-type APS reductase reported here. The results suggest that the dissimilatory and assimilatory APS reductases evolved convergently.
AB - A gene was cloned from Burkholderia cepacia DBO1 that is homologous with Escherichia coli cysH encoding 3'-phosphoadenylylsulfate (PAPS) reductase. The B. cepacia gene is the most recent addition to a growing list of cysH homologs from a diverse group of sulfate-assimilating bacteria whose products show greater homology to plant 5'-adenylylsulfate (APS) reductase than they do to E. coli CysH. The evidence reported here shows that the cysH from one of the species, Pseudomonas aeruginosa, encodes APS reductase. It is able to complement an E. coli cysH mutant and a cysC mutant, indicating that the enzyme is able to bypass PAPS, synthesized by the cysC product. Insertional knockout mutation of P. aeruginosa cysH produced cysteine auxotrophy, indicating its role in sulfate assimilation. Purified P. aeruginosa CysH expressed as a His-tagged recombinant protein is able to reduce APS, but not PAPS. The enzyme has a specific activity of 5.8 μmol · min-1 · mg of protein-1 at pH 8.5 and 30°C with thioredoxin supplied as an electron donor. APS reductase activity was detected in several bacterial species from which the novel type of cysH has been cloned, indicating that this enzyme may be widespread. Although an APS reductase from dissimilatory sulfate-reducing bacteria is known, it shows no structural or sequence homology with the assimilatory-type APS reductase reported here. The results suggest that the dissimilatory and assimilatory APS reductases evolved convergently.
UR - http://www.scopus.com/inward/record.url?scp=0033988199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033988199&partnerID=8YFLogxK
U2 - 10.1128/JB.182.1.135-142.2000
DO - 10.1128/JB.182.1.135-142.2000
M3 - Article
C2 - 10613872
AN - SCOPUS:0033988199
SN - 0021-9193
VL - 182
SP - 135
EP - 142
JO - Journal of bacteriology
JF - Journal of bacteriology
IS - 1
ER -