Imaging measurements in nano-particle enhance spray cooling

J. Torres, A. Perdones, A. Garcia, F. J. Diez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Thermal control is a major constraint in spacecraft development as increased demand on electronics performance requires large heat dissipation from smaller surfaces which has led to increased challenges for thermal control. Spray cooling has a great amount of application in industrial processes as a heat removal method. It is thought to be the future in thermal management systems in space because of its capability for 'close' and accurate control of heat removal. Spray cooling is based on phase change heat transfer generating high heat transfer rates for low superheats. This last term is used to describe the difference in temperature between the heated surface and the cooling fluid. When the temperature of the surface to be cooled rises above the saturation temperature of the fluid splashed to the surface, a phase change occurs at the solid liquid interface during the boiling regime. However, the most interesting phase (regime) is the nucleating boiling where the critical heat flux, CHF, is reached. The CHF is then achieved due to the vapor generation is such as great that the liquid cannot still be in contact with the surface. Thus the heat is transferred through the vapor if there is not enough cold fluid. The thermal conductivity of vapor is lower and so the efficient of the cooling process. This turns out in a decrease on heat flux.

Original languageEnglish (US)
Title of host publicationASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels, FEDSM2010
Pages1847-1848
Number of pages2
EditionPARTS A, B AND C
DOIs
StatePublished - 2010
EventASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels - Montreal, QC, Canada
Duration: Aug 1 2010Aug 5 2010

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
NumberPARTS A, B AND C
Volume1
ISSN (Print)0888-8116

Other

OtherASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, FEDSM 2010 Collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels
Country/TerritoryCanada
CityMontreal, QC
Period8/1/108/5/10

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Imaging measurements in nano-particle enhance spray cooling'. Together they form a unique fingerprint.

Cite this