Improved centroids estimation for the nearest shrunken centroid classifier

Sijian Wang, Ji Zhu

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

Motivation: The nearest shrunken centroid (NSC) method has been successfully applied in many DNA-microarray classification problems. The NSC uses 'shrunken' centroids as prototypes for each class and identifies subsets of genes that best characterize each class. Classification is then made to the nearest (shrunken) centroid. The NSC is very easy to implement and very easy to interpret, however, it has drawbacks. Results: We show that the NSC method can be interpreted in the framework of LASSO regression. Based on that, we consider two new methods, adaptive L-norm penalized NSC (ALP-NSC) and adaptive hierarchically penalized NSC (AHP-NSC), with two different penalty functions for microarray classification, which improve over the NSC. Unlike the L1-norm penalty used in LASSO, the penalty terms that we consider make use of the fact that parameters belonging to one gene should be treated as a natural group. Numerical results indicate that the two new methods tend to remove irrelevant genes more effectively and provide better classification results than the L1-norm approach.

Original languageEnglish (US)
Pages (from-to)972-979
Number of pages8
JournalBioinformatics
Volume23
Issue number8
DOIs
StatePublished - Apr 15 2007
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Improved centroids estimation for the nearest shrunken centroid classifier'. Together they form a unique fingerprint.

Cite this