Abstract
OBJECTIVE: To improve the chemically-activated luciferase expression (CALUX) bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. METHODS: A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2 used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-O-deethylase (EROD) activity induction assay. RESULTS: The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.11 pmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100 pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%. CONCLUSION: The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.
Original language | English (US) |
---|---|
Pages (from-to) | 58-66 |
Number of pages | 9 |
Journal | Biomedical and environmental sciences : BES |
Volume | 15 |
Issue number | 1 |
State | Published - Mar 2002 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis