Improving semi-supervised target alignment via label-aware base kernels

Qiaojun Wang, Kai Zhang, Guofei Jiang, Ivan Marsic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Semi-supervised kernel design is an essential step for obtaining good predictive performance in semi-supervised learning tasks. In the current literatures, a large family of algorithms builds the new kernel by using the weighted average of predefined base kernels. While optimal weighting schemes have been studied extensively, the choice of base kernels received much less attention. Many methods simply adopt the empirical kernel matrices or its eigenvectors. Such base kernels are computed irrespective of class labels and may not always reflect useful structures in the data. As a result, in case of poor base kernels, the generalization performance can be degraded however hard their weights are tuned. In this paper, we propose to construct high-quality base kernels with the help of label information to globally improve the final target alignment. In particular, we devise label-aware kernel eigenvectors under the framework of semi-supervised eigenfunction extrapolation, which span base kernels that are more useful for learning. Such base kernels are individually better aligned to the learning target, so their mixture will more likely generate a good classifier. Our approach is computationally efficient, and demonstrates encouraging performance in semisupervised classification and regression.

Original languageEnglish (US)
Title of host publicationProceedings of the National Conference on Artificial Intelligence
PublisherAI Access Foundation
Pages2106-2112
Number of pages7
ISBN (Electronic)9781577356790
StatePublished - 2014
Event28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014 - Quebec City, Canada
Duration: Jul 27 2014Jul 31 2014

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume3

Other

Other28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014
Country/TerritoryCanada
CityQuebec City
Period7/27/147/31/14

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Improving semi-supervised target alignment via label-aware base kernels'. Together they form a unique fingerprint.

Cite this