TY - GEN
T1 - Improving semi-supervised target alignment via label-aware base kernels
AU - Wang, Qiaojun
AU - Zhang, Kai
AU - Jiang, Guofei
AU - Marsic, Ivan
N1 - Publisher Copyright:
Copyright © 2014, Association for the Advancement of Artificial Intelligence.
PY - 2014
Y1 - 2014
N2 - Semi-supervised kernel design is an essential step for obtaining good predictive performance in semi-supervised learning tasks. In the current literatures, a large family of algorithms builds the new kernel by using the weighted average of predefined base kernels. While optimal weighting schemes have been studied extensively, the choice of base kernels received much less attention. Many methods simply adopt the empirical kernel matrices or its eigenvectors. Such base kernels are computed irrespective of class labels and may not always reflect useful structures in the data. As a result, in case of poor base kernels, the generalization performance can be degraded however hard their weights are tuned. In this paper, we propose to construct high-quality base kernels with the help of label information to globally improve the final target alignment. In particular, we devise label-aware kernel eigenvectors under the framework of semi-supervised eigenfunction extrapolation, which span base kernels that are more useful for learning. Such base kernels are individually better aligned to the learning target, so their mixture will more likely generate a good classifier. Our approach is computationally efficient, and demonstrates encouraging performance in semisupervised classification and regression.
AB - Semi-supervised kernel design is an essential step for obtaining good predictive performance in semi-supervised learning tasks. In the current literatures, a large family of algorithms builds the new kernel by using the weighted average of predefined base kernels. While optimal weighting schemes have been studied extensively, the choice of base kernels received much less attention. Many methods simply adopt the empirical kernel matrices or its eigenvectors. Such base kernels are computed irrespective of class labels and may not always reflect useful structures in the data. As a result, in case of poor base kernels, the generalization performance can be degraded however hard their weights are tuned. In this paper, we propose to construct high-quality base kernels with the help of label information to globally improve the final target alignment. In particular, we devise label-aware kernel eigenvectors under the framework of semi-supervised eigenfunction extrapolation, which span base kernels that are more useful for learning. Such base kernels are individually better aligned to the learning target, so their mixture will more likely generate a good classifier. Our approach is computationally efficient, and demonstrates encouraging performance in semisupervised classification and regression.
UR - http://www.scopus.com/inward/record.url?scp=84908208517&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84908208517&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84908208517
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 2106
EP - 2112
BT - Proceedings of the National Conference on Artificial Intelligence
PB - AI Access Foundation
T2 - 28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014
Y2 - 27 July 2014 through 31 July 2014
ER -