TY - JOUR
T1 - In Vitro Activity of Auranofin in Combination With Aztreonam-Avibactam Against Metallo-β-lactamase (MBL)-Producing Enterobacterales
AU - Wang, Wen
AU - Huang, Shifeng
AU - Zou, Chunhong
AU - Ding, Yanhui
AU - Wang, Huijuan
AU - Pu, Shuli
AU - Liao, Yunfeng
AU - Du, Hong
AU - Wang, Deqiang
AU - Chen, Liang
AU - Niu, Siqiang
N1 - Publisher Copyright:
Copyright © 2021 Wang, Huang, Zou, Ding, Wang, Pu, Liao, Du, Wang, Chen and Niu.
PY - 2021/10/28
Y1 - 2021/10/28
N2 - Objectives: To assess the efficacy of aztreonam-avibactam-auranofin (ATM-AVI-AUR) against a collection of 88 carbapenemase-producing Enterobacterales (CPE) clinical isolates and 6 in vitro selected ATM-AVI-resistant CPE with CMY-16 Tyr150Ser and Asn346His mutants or transformants. Methods: MICs of imipenem, ceftazidime-avibact8am (CAZ-AVI), ATM-AVI, CAZ-AVI-AUR and ATM-AVI-AUR were determined via the broth microdilution method. Genetic background and carbapenemase genes were determined by PCR and Sanger sequencing. Results: AUR alone showed little antibacterial activity with AUR MICs were greater than 64 μg/mL for all the 88 clinical CPE isolates. The addition of AUR (16 μg/mL) resulted in an 3-folding dilutions MIC reduction of ATM-AVI MIC50 (0.5 to 0.0625 μg/mL) and a 2-folding dilutions MIC reduction of MIC90 (1 to 0.25 μg/mL) against all 88 clinical CPE isolates, respectively. Notably, the reduced ATM-AVI MIC values were mainly found in MBL-producers, and the MIC50 and MIC90 reduced by 2-folding dilutions (0.25 to 0.0625 μg/mL) and 3-folding dilutions (2 to 0.25 μg/mL) respectively by AUR among the 51 MBL-producers. By contrast, the addition of AUR did not showed significant effects on ATM-AVI MIC50 (0.0625 μg/mL) and MIC90 (0.125 μg/mL) among single KPC-producers. Interestingly, the addition of AUR restored the ATM-AVI susceptibility against the 6 in vitro selected ATM-AVI-resistant CMY-16 Tyr150Ser and Asn346His mutants or transfromants, with the MICs reduced from ≥32 μg/mL (32->256 μg/mL) to ≤8 μg/mL (0.0625-8 μg/mL). Conclusions: Our results demonstrated that AUR potentiated the activities of CAZ-AVI and ATM-AVI against MBL-producing isolates in vitro. Importantly, AUR restored the ATM-AVI activity against ATM-AVI resistant mutant strains. As a clinically approved drug, AUR might be repurposed in combination with ATM-AVI to treat infections caused by highly resistant MBL-producing Enterobacterales.
AB - Objectives: To assess the efficacy of aztreonam-avibactam-auranofin (ATM-AVI-AUR) against a collection of 88 carbapenemase-producing Enterobacterales (CPE) clinical isolates and 6 in vitro selected ATM-AVI-resistant CPE with CMY-16 Tyr150Ser and Asn346His mutants or transformants. Methods: MICs of imipenem, ceftazidime-avibact8am (CAZ-AVI), ATM-AVI, CAZ-AVI-AUR and ATM-AVI-AUR were determined via the broth microdilution method. Genetic background and carbapenemase genes were determined by PCR and Sanger sequencing. Results: AUR alone showed little antibacterial activity with AUR MICs were greater than 64 μg/mL for all the 88 clinical CPE isolates. The addition of AUR (16 μg/mL) resulted in an 3-folding dilutions MIC reduction of ATM-AVI MIC50 (0.5 to 0.0625 μg/mL) and a 2-folding dilutions MIC reduction of MIC90 (1 to 0.25 μg/mL) against all 88 clinical CPE isolates, respectively. Notably, the reduced ATM-AVI MIC values were mainly found in MBL-producers, and the MIC50 and MIC90 reduced by 2-folding dilutions (0.25 to 0.0625 μg/mL) and 3-folding dilutions (2 to 0.25 μg/mL) respectively by AUR among the 51 MBL-producers. By contrast, the addition of AUR did not showed significant effects on ATM-AVI MIC50 (0.0625 μg/mL) and MIC90 (0.125 μg/mL) among single KPC-producers. Interestingly, the addition of AUR restored the ATM-AVI susceptibility against the 6 in vitro selected ATM-AVI-resistant CMY-16 Tyr150Ser and Asn346His mutants or transfromants, with the MICs reduced from ≥32 μg/mL (32->256 μg/mL) to ≤8 μg/mL (0.0625-8 μg/mL). Conclusions: Our results demonstrated that AUR potentiated the activities of CAZ-AVI and ATM-AVI against MBL-producing isolates in vitro. Importantly, AUR restored the ATM-AVI activity against ATM-AVI resistant mutant strains. As a clinically approved drug, AUR might be repurposed in combination with ATM-AVI to treat infections caused by highly resistant MBL-producing Enterobacterales.
KW - auranofin
KW - aztreonam-avibactam
KW - carbapenem-resistant Enterobacterales
KW - carbapenemase-producing Enterobacterales
KW - ceftazidime-avibactam
KW - metallo-β-lactamases
KW - minimum inhibitory concentrations 5
KW - serine-β-lactamases
UR - http://www.scopus.com/inward/record.url?scp=85119061349&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85119061349&partnerID=8YFLogxK
U2 - 10.3389/fcimb.2021.755763
DO - 10.3389/fcimb.2021.755763
M3 - Article
C2 - 34778107
AN - SCOPUS:85119061349
SN - 2235-2988
VL - 11
JO - Frontiers in Cellular and Infection Microbiology
JF - Frontiers in Cellular and Infection Microbiology
M1 - 755763
ER -