TY - JOUR
T1 - Increased susceptibility of aged hearts to ventricular fibrillation during oxidative stress
AU - Morita, Norishige
AU - Sovari, Ali A.
AU - Xie, Yuanfang
AU - Fishbein, Michael C.
AU - Mandel, William J.
AU - Garfinkel, Alan
AU - Lin, Shien Fong
AU - Chen, Peng Sheng
AU - Xie, Lai Hua
AU - Chen, Fuhua
AU - Qu, Zhilin
AU - Weiss, James N.
AU - Karagueuzian, Hrayr S.
PY - 2009/11
Y1 - 2009/11
N2 - Oxidative stress with hydrogen peroxide (H2O2) readily promotes early afterdepolarizations (EADs) and triggered activity (TA) in isolated rat and rabbit ventricular myocytes. Here we examined the effects of H2O2 on arrhythmias in intact Langendorff rat and rabbit hearts using dual-membrane voltage and intracellular calcium optical mapping and glass microelectrode recordings. Young adult rat (3-5 mo, N = 25) and rabbit (3-5 mo, N = 6) hearts exhibited no arrhythmias when perfused with H 2O2 (0.1-2 mM) for up to 3 h. However, in 33 out of 35 (94%) aged (24-26 mo) rat hearts, 0.1 mM H2O2 caused EAD-mediated TA, leading to ventricular tachycardia (VT) and fibrillation (VF). Aged rabbits (life span, 8-12 yr) were not available, but 4 of 10 middle-aged rabbits (3-5 yr) developed EADs, TA, VT, and VF. These arrhythmias were suppressed by the reducing agent N-acetylcysteine (2 mM) and CaMKII inhibitor KN-93 (1 μM) but not by its inactive form (KN-92, 1 μM). There were no significant differences between action potential duration (APD) or APD restitution slope before or after H2O2 in aged or young adult rat hearts. In histological sections, however, trichrome staining revealed that aged rat hearts exhibited extensive fibrosis, ranging from 10-90%; middle-aged rabbit hearts had less fibrosis (5-35%), whereas young adult rat and rabbit hearts had <4% fibrosis. In aged rat hearts, EADs and TA arose most frequently (70%) from the left ventricular base where fibrosis was intermediate (∼30%). Computer simulations in two-dimensional tissue incorporating variable degrees of fibrosis showed that intermediate (but not mild or severe) fibrosis promoted EADs and TA. We conclude that in aged ventricles exposed to oxidative stress, fibrosis facilitates the ability of cellular EADs to emerge and generate TA, VT, and VF at the tissue level.
AB - Oxidative stress with hydrogen peroxide (H2O2) readily promotes early afterdepolarizations (EADs) and triggered activity (TA) in isolated rat and rabbit ventricular myocytes. Here we examined the effects of H2O2 on arrhythmias in intact Langendorff rat and rabbit hearts using dual-membrane voltage and intracellular calcium optical mapping and glass microelectrode recordings. Young adult rat (3-5 mo, N = 25) and rabbit (3-5 mo, N = 6) hearts exhibited no arrhythmias when perfused with H 2O2 (0.1-2 mM) for up to 3 h. However, in 33 out of 35 (94%) aged (24-26 mo) rat hearts, 0.1 mM H2O2 caused EAD-mediated TA, leading to ventricular tachycardia (VT) and fibrillation (VF). Aged rabbits (life span, 8-12 yr) were not available, but 4 of 10 middle-aged rabbits (3-5 yr) developed EADs, TA, VT, and VF. These arrhythmias were suppressed by the reducing agent N-acetylcysteine (2 mM) and CaMKII inhibitor KN-93 (1 μM) but not by its inactive form (KN-92, 1 μM). There were no significant differences between action potential duration (APD) or APD restitution slope before or after H2O2 in aged or young adult rat hearts. In histological sections, however, trichrome staining revealed that aged rat hearts exhibited extensive fibrosis, ranging from 10-90%; middle-aged rabbit hearts had less fibrosis (5-35%), whereas young adult rat and rabbit hearts had <4% fibrosis. In aged rat hearts, EADs and TA arose most frequently (70%) from the left ventricular base where fibrosis was intermediate (∼30%). Computer simulations in two-dimensional tissue incorporating variable degrees of fibrosis showed that intermediate (but not mild or severe) fibrosis promoted EADs and TA. We conclude that in aged ventricles exposed to oxidative stress, fibrosis facilitates the ability of cellular EADs to emerge and generate TA, VT, and VF at the tissue level.
KW - Aging
KW - Calcium transient
KW - Early afterdepolarization
KW - Fibrosis
KW - Optical mapping
KW - Triggered activity
UR - http://www.scopus.com/inward/record.url?scp=70350455536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350455536&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00579.2009
DO - 10.1152/ajpheart.00579.2009
M3 - Article
C2 - 19767530
AN - SCOPUS:70350455536
SN - 0363-6135
VL - 297
SP - H1594-H1605
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 5
ER -