Increasing the Raw Key Rate in Energy-Time Entanglement Based Quantum Key Distribution

Esmaeil Karimi, Emina Soljanin, Philip Whiting

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

A Quantum Key Distribution (QKD) protocol describes how two remote parties can establish a secret key by communicating over a quantum and a public classical channel that both can be accessed by an eavesdropper. QKD protocols using energy-time entangled photon pairs are of growing practical interest because of their potential to provide a higher secure key rate over long distances by carrying multiple bits per entangled photon pair. We consider a system where information can be extracted by measuring random times of a sequence of entangled photon arrivals. Our goal is to maximize the utility of each such pair. We propose a discrete time model for the photon arrival process, and establish a theoretical bound on the number of raw bits that can be generated under this model. We first analyse a well known simple binning encoding scheme, and show that it generates significantly lower information rate than what is theoretically possible. We then propose three adaptive schemes that increase the number of raw bits generated per photon, and compute and compare the information rates they offer. Moreover, the effect of public channel communication on the secret key rates of the proposed schemes is investigated.

Original languageEnglish (US)
Title of host publicationConference Record of the 54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
EditorsMichael B. Matthews
PublisherIEEE Computer Society
Pages433-438
Number of pages6
ISBN (Electronic)9780738131269
DOIs
StatePublished - Nov 1 2020
Event54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020 - Pacific Grove, United States
Duration: Nov 1 2020Nov 5 2020

Publication series

NameConference Record - Asilomar Conference on Signals, Systems and Computers
Volume2020-November
ISSN (Print)1058-6393

Conference

Conference54th Asilomar Conference on Signals, Systems and Computers, ACSSC 2020
Country/TerritoryUnited States
CityPacific Grove
Period11/1/2011/5/20

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Increasing the Raw Key Rate in Energy-Time Entanglement Based Quantum Key Distribution'. Together they form a unique fingerprint.

Cite this