TY - JOUR
T1 - Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch
AU - Mandel, Abigail L.
AU - Des Gachons, Catherine Peyrot
AU - Plank, Kimberly L.
AU - Alarcon, Suzanne
AU - Breslin, Paul A.S.
N1 - Funding Information:
This study was funded in part by National Starch Co. The authors were not employed by, nor did they consult for, National Starch. There are no products, commercial items, nor patents involving National Starch that will come from this research. This funding does not alter the authors' adherence to all PLoS ONE policies on sharing data and materials.
PY - 2010/10/13
Y1 - 2010/10/13
N2 - Background: The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored. Principal Findings: Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual's amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning. Conclusions: By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.
AB - Background: The digestion of dietary starch in humans is initiated by salivary α-amylase, an endo-enzyme that hydrolyzes starch into maltose, maltotriose and larger oligosaccharides. Salivary amylase accounts for 40 to 50% of protein in human saliva and rapidly alters the physical properties of starch. Importantly, the quantity and enzymatic activity of salivary amylase show significant individual variation. However, linking variation in salivary amylase levels with the oral perception of starch has proven difficult. Furthermore, the relationship between copy number variations (CNVs) in the AMY1 gene, which influence salivary amylase levels, and starch viscosity perception has not been explored. Principal Findings: Here we demonstrate that saliva containing high levels of amylase has sufficient activity to rapidly hydrolyze a viscous starch solution in vitro. Furthermore, we show with time-intensity ratings, which track the digestion of starch during oral manipulation, that individuals with high amylase levels report faster and more significant decreases in perceived starch viscosity than people with low salivary amylase levels. Finally, we demonstrate that AMY1 CNVs predict an individual's amount and activity of salivary amylase and thereby, ultimately determine their perceived rate of oral starch viscosity thinning. Conclusions: By linking genetic variation and its consequent salivary enzymatic differences to the perceptual sequellae of these variations, we show that AMY1 copy number relates to salivary amylase concentration and enzymatic activity level, which, in turn, account for individual variation in the oral perception of starch viscosity. The profound individual differences in salivary amylase levels and salivary activity may contribute significantly to individual differences in dietary starch intake and, consequently, to overall nutritional status.
UR - http://www.scopus.com/inward/record.url?scp=78149443848&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78149443848&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0013352
DO - 10.1371/journal.pone.0013352
M3 - Article
C2 - 20967220
AN - SCOPUS:78149443848
SN - 1932-6203
VL - 5
JO - PloS one
JF - PloS one
IS - 10
M1 - e13352
ER -