Abstract
It is of great interest to develop a pneumonic plague vaccine that would induce combined humoral and cellular immunity in the lung. Here we investigate a novel approach based on targeting of dendritic cells using the DEC-205/CD205 receptor (DEC) via the intranasal route as way to improve mucosal cellular immunity to the vaccine. Intranasal administration of Yersinia pestis LcrV (V) protein fused to anti-DEC antibody together with poly IC as an adjuvant induced high frequencies of IFN-γ secreting CD4+ T cells in the airway and lung as well as pulmonary IgG and IgA antibodies. Anti-DEC:LcrV was more efficient to induce IFN-γ/TNF-α/IL-2 secreting polyfunctional CD4+ T cells when compared to non-targeted soluble protein vaccine. In addition, the intranasal route of immunization with anti-DEC:LcrV was associated with improved survival upon pulmonary challenge with the virulent CO92 Y. pestis. Taken together, these data indicate that targeting dendritic cells via the mucosal route is a potential new avenue for the development of a mucosal vaccine against pneumonic plague.
Original language | English (US) |
---|---|
Pages (from-to) | 6359-6367 |
Number of pages | 9 |
Journal | Vaccine |
Volume | 30 |
Issue number | 45 |
DOIs | |
State | Published - Oct 5 2012 |
All Science Journal Classification (ASJC) codes
- Molecular Medicine
- General Immunology and Microbiology
- General Veterinary
- Public Health, Environmental and Occupational Health
- Infectious Diseases
Keywords
- CD205/DEC-205
- Cellular immunity
- Dendritic cells
- LcrV
- Mucosal
- Y. pestis