Inferring reaction network structure from single-cell, multiplex data, using toric systems theory

Shu Wang, Jia Ren Lin, Eduardo D. Sontag, Peter K. Sorger

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

The goal of many single-cell studies on eukaryotic cells is to gain insight into the biochemical reactions that control cell fate and state. In this paper we introduce the concept of Effective Stoichiometric Spaces (ESS) to guide the reconstruction of biochemical networks from multiplexed, fixed time-point, single-cell data. In contrast to methods based solely on statistical models of data, the ESS method leverages the power of the geometric theory of toric varieties to begin unraveling the structure of chemical reaction networks (CRN). This application of toric theory enables a data-driven mapping of covariance relationships in single-cell measurements into stoichiometric information, one in which each cell subpopulation has its associated ESS interpreted in terms of CRN theory. In the development of ESS we reframe certain aspects of the theory of CRN to better match data analysis. As an application of our approach we process cytomery- and image-based single-cell datasets and identify differences in cells treated with kinase inhibitors. Our approach is directly applicable to data acquired using readily accessible experimental methods such as Fluorescence Activated Cell Sorting (FACS) and multiplex immunofluorescence.

Original languageEnglish (US)
Article numbere1007311
JournalPLoS computational biology
Volume15
Issue number12
DOIs
StatePublished - 2019

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Inferring reaction network structure from single-cell, multiplex data, using toric systems theory'. Together they form a unique fingerprint.

Cite this