Informing direct neutron capture on tin isotopes near the N=82 shell closure

B. Manning, G. Arbanas, J. A. Cizewski, R. L. Kozub, S. Ahn, J. M. Allmond, D. W. Bardayan, K. Y. Chae, K. A. Chipps, M. E. Howard, K. L. Jones, J. F. Liang, M. Matos, C. D. Nesaraja, F. M. Nunes, P. D. O'Malley, S. D. Pain, W. A. Peters, S. T. Pittman, A. RatkiewiczK. T. Schmitt, D. Shapira, M. S. Smith, L. Titus

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Half of the elements heavier than iron are believed to be produced through the rapid neutron-capture process (r process). The astrophysical environment(s) where the r process occurs remains an open question, even after recent observations of neutron-star mergers and the associated kilonova. Features in the abundance pattern of r-process ashes may provide critical insight for distinguishing contributions from different possible sites, including neutron-star mergers and core-collapse supernovae. In particular, the largely unknown neutron-capture reaction rates on neutron-rich unstable nuclei near Sn132 could have a significant impact on the final r-process abundances. To better determine these neutron-capture rates, the (d,p) reaction has been measured in inverse kinematics using radioactive ion beams of Sn126 and Sn128 and a stable beam of Sn124 interacting with a (CD2)n target. An array of position-sensitive silicon strip detectors, including the Super Oak Ridge Rutgers University Barrel Array, was used to detect light reaction products. In addition to the present measurements, previous measurements of Sn130,132(d,p) were reanalyzed using state-of-the-art reaction theory to extract a consistent set of spectroscopic factors for (d,p) reactions on even tin nuclei between the heaviest stable isotope Sn124 and doubly magic Sn132. The spectroscopic information was used to calculate direct-semidirect (n,γ) cross sections, which will serve as important input for r-process abundance calculations.

Original languageEnglish (US)
Article number041302
JournalPhysical Review C
Volume99
Issue number4
DOIs
StatePublished - Apr 18 2019

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Informing direct neutron capture on tin isotopes near the N=82 shell closure'. Together they form a unique fingerprint.

Cite this