Integrating self-report and psychophysiological measures in waterpipe tobacco message testing: A novel application of multi-attribute decision modeling

Elise M. Stevens, Andrea C. Villanti, Glenn Leshner, Theodore L. Wagener, Brittney Keller-Hamilton, Darren Mays

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Background: Waterpipe (i.e., hookah) tobacco smoking (WTS) is one of the most prevalent types of smoking among young people, yet there is little public education communicating the risks of WTS to the population. Using self-report and psychophysiological measures, this study proposes an innovative message testing and data integration approach to choose optimal content for health communication messaging focusing on WTS. Methods: In a two-part study, we tested 12 WTS risk messages. Using crowdsourcing, participants (N = 713) rated WTS messages based on selfreported receptivity, engagement, attitudes, and negative emotions. In an in-lab study, participants (N = 120) viewed the 12 WTS risk messages while being monitored for heart rate and eye-tracking, and then completed a recognition task. Using a multi-attribute decision-making (MADM) model, we integrated data from these two methods with scenarios assigning different weights to the selfreport and laboratory data to identify optimal messages. Results: We identified different optimal messages when differently weighting the importance of specific attributes or data collection method (self-report, laboratory). Across all scenarios, five messages consistently ranked in the top half: four addressed harms content, both alone and with themes regarding social use and flavors and one addiction alone message. Discussion: Results showed that the self-report and psychophysiological data did not always have the same ranking and differed based on weighting of the two methods. These findings highlight the need to formatively test messages using multiple methods and use an integrated approach when selecting content.

Original languageEnglish (US)
Article number11814
JournalInternational journal of environmental research and public health
Volume18
Issue number22
DOIs
StatePublished - Nov 1 2021
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Keywords

  • Communication
  • Messaging
  • Psychophysiology
  • Waterpipe

Fingerprint

Dive into the research topics of 'Integrating self-report and psychophysiological measures in waterpipe tobacco message testing: A novel application of multi-attribute decision modeling'. Together they form a unique fingerprint.

Cite this