Abstract
Observation of light emission from porous Si has demonstrated that the optical properties of Si can be drastically altered by the quantum size effects. We have investigated the improvement of absorption properties of Si material by forming a porous Si layer. Shallow-junction commercial crystalline as well as polycrystalline Si solar cells without anti-reflective coatings have been processed into porous Si solar cells by a wet chemical etching technique. Our best results have demonstrated more than 15% improvement in short-circuit current with no change in open-circuit voltage. The performance of the porous Si solar cells has been found to be sensitive to the porous layer thickness. The efficiency can be reduced when the porous layer is relatively deep, presumably due to the penetration of pores through the shallow junction. We believe porous Si can be optimized for photovoltaic applications by properly controlling its porosity and thickness.
Original language | English (US) |
---|---|
Pages (from-to) | 593-598 |
Number of pages | 6 |
Journal | Materials Research Society Symposium - Proceedings |
Volume | 358 |
State | Published - 1995 |
Externally published | Yes |
Event | Proceedings of the 1994 MRS Fall Meeting - Boston, MA, USA Duration: Nov 28 1994 → Nov 30 1994 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering