Involvement of the carboxyl terminus of vertebrate poly(A)polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation

Samuel Gunderson, Stéphan Vagner, Maria Polycarpou-Schwarz, Lain W. Mattaj

Research output: Contribution to journalArticle

111 Citations (Scopus)

Abstract

Interactions required for inhibition of poly(A) polymerase (PAP) by the U1 snRNP-specific U1A protein, a reaction whose function is to autoregulate U1A protein production, are examined. PAP inhibition requires a substrate RNA to which at least two molecules of U1A protein can bind tightly, but we demonstrate that the secondary structure of the RNA is not highly constrained. A mutational analysis reveals that the carboxy-terminal 20 amino acids of PAP are essential for its inhibition by the UIA-RNA complex. Remarkably, transfer of these amino acids to yeast PAP, which is otherwise not affected by U1A protein, is sufficient to confer U1A-mediated inhibition onto the yeast enzyme. A glutathione S.transferase fusion protein containing only these 20 PAP residues can interact in vitro with an RNA-U1A protein complex containing two U1A molecules, but not with one containing a single U1A protein, explaining the requirement for two U1A.binding sites on the a to regulatory RNA element. A mutational analysis of the U1A protein demonstrates that amino acids 103-119 are required for PAP inhibition. A monomeric synthetic peptide consisting of the conserved U1A amino acids from this region has no detectable effect on PAP activity. However, the same U1A peptide, when conjugated to BSA, inhibits vertebrate PAP. In addition to this activity, the U1A peptide-BSA conjugate specifically uncouples splicing and 3'-end formation in vitro without affecting uncoupled splicing or 3'-end cleavage efficiencies. This suggests that the carboxy-terminal region of PAP with which it interacts is involved not only in U1A autoregulation but also in the coupling of splicing and 3'-end formation.

Original languageEnglish (US)
Pages (from-to)761-773
Number of pages13
JournalGenes and Development
Volume11
Issue number6
DOIs
StatePublished - Mar 15 1997

Fingerprint

Polynucleotide Adenylyltransferase
Polyadenylation
Vertebrates
Homeostasis
RNA
Amino Acids
Peptides
U1 Small Nuclear Ribonucleoproteins
Yeasts
Essential Amino Acids
U1A protein
Glutathione Transferase
Binding Sites

All Science Journal Classification (ASJC) codes

  • Genetics
  • Developmental Biology

Cite this

@article{d1be9c25987a47b0af1805e29ecbe432,
title = "Involvement of the carboxyl terminus of vertebrate poly(A)polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation",
abstract = "Interactions required for inhibition of poly(A) polymerase (PAP) by the U1 snRNP-specific U1A protein, a reaction whose function is to autoregulate U1A protein production, are examined. PAP inhibition requires a substrate RNA to which at least two molecules of U1A protein can bind tightly, but we demonstrate that the secondary structure of the RNA is not highly constrained. A mutational analysis reveals that the carboxy-terminal 20 amino acids of PAP are essential for its inhibition by the UIA-RNA complex. Remarkably, transfer of these amino acids to yeast PAP, which is otherwise not affected by U1A protein, is sufficient to confer U1A-mediated inhibition onto the yeast enzyme. A glutathione S.transferase fusion protein containing only these 20 PAP residues can interact in vitro with an RNA-U1A protein complex containing two U1A molecules, but not with one containing a single U1A protein, explaining the requirement for two U1A.binding sites on the a to regulatory RNA element. A mutational analysis of the U1A protein demonstrates that amino acids 103-119 are required for PAP inhibition. A monomeric synthetic peptide consisting of the conserved U1A amino acids from this region has no detectable effect on PAP activity. However, the same U1A peptide, when conjugated to BSA, inhibits vertebrate PAP. In addition to this activity, the U1A peptide-BSA conjugate specifically uncouples splicing and 3'-end formation in vitro without affecting uncoupled splicing or 3'-end cleavage efficiencies. This suggests that the carboxy-terminal region of PAP with which it interacts is involved not only in U1A autoregulation but also in the coupling of splicing and 3'-end formation.",
author = "Samuel Gunderson and St{\'e}phan Vagner and Maria Polycarpou-Schwarz and Mattaj, {Lain W.}",
year = "1997",
month = "3",
day = "15",
doi = "10.1101/gad.11.6.761",
language = "English (US)",
volume = "11",
pages = "761--773",
journal = "Genes and Development",
issn = "0890-9369",
publisher = "Cold Spring Harbor Laboratory Press",
number = "6",

}

Involvement of the carboxyl terminus of vertebrate poly(A)polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation. / Gunderson, Samuel; Vagner, Stéphan; Polycarpou-Schwarz, Maria; Mattaj, Lain W.

In: Genes and Development, Vol. 11, No. 6, 15.03.1997, p. 761-773.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Involvement of the carboxyl terminus of vertebrate poly(A)polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation

AU - Gunderson, Samuel

AU - Vagner, Stéphan

AU - Polycarpou-Schwarz, Maria

AU - Mattaj, Lain W.

PY - 1997/3/15

Y1 - 1997/3/15

N2 - Interactions required for inhibition of poly(A) polymerase (PAP) by the U1 snRNP-specific U1A protein, a reaction whose function is to autoregulate U1A protein production, are examined. PAP inhibition requires a substrate RNA to which at least two molecules of U1A protein can bind tightly, but we demonstrate that the secondary structure of the RNA is not highly constrained. A mutational analysis reveals that the carboxy-terminal 20 amino acids of PAP are essential for its inhibition by the UIA-RNA complex. Remarkably, transfer of these amino acids to yeast PAP, which is otherwise not affected by U1A protein, is sufficient to confer U1A-mediated inhibition onto the yeast enzyme. A glutathione S.transferase fusion protein containing only these 20 PAP residues can interact in vitro with an RNA-U1A protein complex containing two U1A molecules, but not with one containing a single U1A protein, explaining the requirement for two U1A.binding sites on the a to regulatory RNA element. A mutational analysis of the U1A protein demonstrates that amino acids 103-119 are required for PAP inhibition. A monomeric synthetic peptide consisting of the conserved U1A amino acids from this region has no detectable effect on PAP activity. However, the same U1A peptide, when conjugated to BSA, inhibits vertebrate PAP. In addition to this activity, the U1A peptide-BSA conjugate specifically uncouples splicing and 3'-end formation in vitro without affecting uncoupled splicing or 3'-end cleavage efficiencies. This suggests that the carboxy-terminal region of PAP with which it interacts is involved not only in U1A autoregulation but also in the coupling of splicing and 3'-end formation.

AB - Interactions required for inhibition of poly(A) polymerase (PAP) by the U1 snRNP-specific U1A protein, a reaction whose function is to autoregulate U1A protein production, are examined. PAP inhibition requires a substrate RNA to which at least two molecules of U1A protein can bind tightly, but we demonstrate that the secondary structure of the RNA is not highly constrained. A mutational analysis reveals that the carboxy-terminal 20 amino acids of PAP are essential for its inhibition by the UIA-RNA complex. Remarkably, transfer of these amino acids to yeast PAP, which is otherwise not affected by U1A protein, is sufficient to confer U1A-mediated inhibition onto the yeast enzyme. A glutathione S.transferase fusion protein containing only these 20 PAP residues can interact in vitro with an RNA-U1A protein complex containing two U1A molecules, but not with one containing a single U1A protein, explaining the requirement for two U1A.binding sites on the a to regulatory RNA element. A mutational analysis of the U1A protein demonstrates that amino acids 103-119 are required for PAP inhibition. A monomeric synthetic peptide consisting of the conserved U1A amino acids from this region has no detectable effect on PAP activity. However, the same U1A peptide, when conjugated to BSA, inhibits vertebrate PAP. In addition to this activity, the U1A peptide-BSA conjugate specifically uncouples splicing and 3'-end formation in vitro without affecting uncoupled splicing or 3'-end cleavage efficiencies. This suggests that the carboxy-terminal region of PAP with which it interacts is involved not only in U1A autoregulation but also in the coupling of splicing and 3'-end formation.

UR - http://www.scopus.com/inward/record.url?scp=0031004560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031004560&partnerID=8YFLogxK

U2 - 10.1101/gad.11.6.761

DO - 10.1101/gad.11.6.761

M3 - Article

C2 - 9087430

AN - SCOPUS:0031004560

VL - 11

SP - 761

EP - 773

JO - Genes and Development

JF - Genes and Development

SN - 0890-9369

IS - 6

ER -