Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein

Alok Pandey, Heeyong Yoon, Elise R. Lyver, Andrew Dancis, Debkumar Pain

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Cysteine desulfurases perform pyridoxal phosphate (PLP)-dependent desulfuration of cysteine. The key steps of the enzymatic cycle include substrate binding to PLP, formation of a covalent persulfide intermediate at the active site cysteine, and transfer of sulfur to recipients for use in various metabolic pathways. In Saccharomyces cerevisiae, the cysteine desulfurase Nfs1p and an accessory protein, Isd11p, are found primarily in mitochondria, and both are essential for cell viability. Although cysteine desulfurases are conserved from bacteria to humans, Isd11p is found only in eukaryotes and not in prokaryotes. Here we show that Isd11p activates Nfs1p. The enzyme without Isd11p was inactive and did not form the [ 35S]persulfide intermediate from the substrate [ 35S]cysteine. Addition of Isd11p to inactive Nfs1p induced formation of the persulfide. Remarkably, in a two-step assay, [ 35S]cysteine could be bound to the inactive Nfs1p in a PLP-dependent manner, and the enzyme could be subsequently induced to form the persulfide by addition of Isd11p. A mutant form of Isd11p with the 15LYK 17 motif changed to 15AAA 17 was able to bind but failed to activate Nfs1p, thus separating these two functions of Isd11p. Finally, compared with Nfs1p with or without the bound Isd11p mutant, the Nfs1p·Isd11p complex was more resistant to inactivation by an alkylating agent. On the basis of these novel findings, we propose that interaction of Isd11p with Nfs1p activates the enzyme by inducing a conformational change, thereby promoting formation of the persulfide intermediate at the active site cysteine. Such a conformational change may protect the active site cysteine from alkylating agents.

Original languageEnglish (US)
Pages (from-to)38242-38252
Number of pages11
JournalJournal of Biological Chemistry
Issue number44
StatePublished - Nov 4 2011

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Isd11p protein activates the mitochondrial cysteine desulfurase Nfs1p protein'. Together they form a unique fingerprint.

Cite this