Abstract
Administration of L-DOPA (50 mg/kg) elicits a significant increase in extracellular dopamine in striata of rats treated with the catecholaminergic neurotoxin 6-hydroxydopamine but not in striata of intact rats. To assess the role of dopaminergic nerve terminals in determining the effects of exogenous L-DOPA on extracellular dopamine levels in striatum, we examined the relative contributions of monoamine oxidase A and monoamine oxidase B to the catabolism of dopamine synthesized from exogenous L-DOPA. Extracellular concentrations of dopamine and its catabolite, 3,4-dihydroxyphenylacetic acid, were monitored with in vivo dialysis in striata of intact rats and of rats with unilateral 6-hydroxydopamine lesions of striatal dopamine. Clorgyline (2 mg/kg), an inhibitor of monoamine oxidase A, significantly increased dopamine and decreased 3,4-dihydroxyphenylacetic acid in intact but not in dopamine-depleted striata. Inhibition of monoamine oxidase B with either L-deprenyl (1 mg/kg) or Ro 19-6327 (1 mg/kg) did not significantly affect dopamine or 3,4-dihydroxyphenylacetic acid in striata of intact or dopamine-depleted rats. In intact rats, administration of clorgyline in conjunction with L-DOPA produced a >20-fold increase in dopamine and prevented the L-DOPA-induced increase in 3,4-dihydroxyphenylacetic acid. Although both L-deprenyl and Ro 19-6327 administered in combination with L- DOPA elicited a small but significant increase in dopamine, levels of 3,4- dihydroxyphenylacetic acid were not affected. In rats pretreated with 6- hydroxydopamine, clorgyline had no significant effect on the increases in dopamine and 3,4-dihydroxyphenylacetic acid elicited by L-DOPA. Furthermore, neither L-deprenyl nor Ro 19-6327 affected L-DOPA-induced increases in dopamine and 3,4-dihydroxyphenylacetic acid in dopamine-depleted striata. The present findings indicate that deamination by monoamine oxidase A is the primary mechanism for catabolism of striatal dopamine, both under basal conditions and after administration of exogenous L-DOPA. Loss of dopaminergic terminals eliminates this action of monoamine oxidase A but does not enhance deamination by monoamine oxidase B. These data support a model in which exogenous L-DOPA elicits enhanced extracellular accumulation of dopamine in the dopamine-depleted striatum because some transmitter synthesis occurs at nondopaminergic sites and the dopamine terminals that normally take up and catabolize this pool of transmitter are absent.
Original language | English (US) |
---|---|
Pages (from-to) | 108-117 |
Number of pages | 10 |
Journal | Journal of neurochemistry |
Volume | 63 |
Issue number | 1 |
State | Published - Jul 1994 |
All Science Journal Classification (ASJC) codes
- Cellular and Molecular Neuroscience
- Biochemistry
Keywords
- Clorgyline
- Dialysis
- Dopamine
- L-DOPA
- L-Deprenyl
- Monoamine oxidase