Latent space sparse subspace clustering

Vishal M. Patel, Hien Van Nguyen, Rene Vidal

Research output: Chapter in Book/Report/Conference proceedingConference contribution

173 Scopus citations

Abstract

We propose a novel algorithm called Latent Space Sparse Subspace Clustering for simultaneous dimensionality reduction and clustering of data lying in a union of subspaces. Specifically, we describe a method that learns the projection of data and finds the sparse coefficients in the low-dimensional latent space. Cluster labels are then assigned by applying spectral clustering to a similarity matrix built from these sparse coefficients. An efficient optimization method is proposed and its non-linear extensions based on the kernel methods are presented. One of the main advantages of our method is that it is computationally efficient as the sparse coefficients are found in the low-dimensional latent space. Various experiments show that the proposed method performs better than the competitive state-of-the-art subspace clustering methods.

Original languageEnglish (US)
Title of host publicationProceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages225-232
Number of pages8
ISBN (Print)9781479928392
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 14th IEEE International Conference on Computer Vision, ICCV 2013 - Sydney, NSW, Australia
Duration: Dec 1 2013Dec 8 2013

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Other

Other2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Country/TerritoryAustralia
CitySydney, NSW
Period12/1/1312/8/13

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Subspace clustering
  • dimension reduction
  • sparse optimization

Fingerprint

Dive into the research topics of 'Latent space sparse subspace clustering'. Together they form a unique fingerprint.

Cite this