Layered Semiconductor Cr0.32Ga0.68Te2.33 with Concurrent Broken Inversion Symmetry and Ferromagnetism: A Bulk Ferrovalley Material Candidate

Yingdong Guan, Leixin Miao, Jingyang He, Jinliang Ning, Yangyang Chen, Weiwei Xie, Jianwei Sun, Venkatraman Gopalan, Jun Zhu, Xiaoping Wang, Nasim Alem, Qiang Zhang, Zhiqiang Mao

Research output: Contribution to journalArticlepeer-review


The valleytronic state found in group-VI transition-metal dichalcogenides such as MoS2 has attracted immense interest since its valley degree of freedom could be used as an information carrier. However, valleytronic applications require spontaneous valley polarization. Such an electronic state is predicted to be accessible in a new ferroic family of materials, i.e., ferrovalley materials, which features the coexistence of spontaneous spin and valley polarization. Although many atomic monolayer materials with hexagonal lattices have been predicted to be ferrovalley materials, no bulk ferrovalley material candidates have been reported or proposed. Here, we show that a new non-centrosymmetric van der Waals (vdW) semiconductor Cr0.32Ga0.68Te2.33, with intrinsic ferromagnetism, is a possible candidate for bulk ferrovalley material. This material exhibits several remarkable characteristics: (i) it forms a natural heterostructure between vdW gaps, a quasi-two-dimensional (2D) semiconducting Te layer with a honeycomb lattice stacked on the 2D ferromagnetic slab comprised of the (Cr, Ga)-Te layers, and (ii) the 2D Te honeycomb lattice yields a valley-like electronic structure near the Fermi level, which, in combination with inversion symmetry breaking, ferromagnetism, and strong spin-orbit coupling contributed by heavy Te element, creates a possible bulk spin-valley locked electronic state with valley polarization as suggested by our DFT calculations. Further, this material can also be easily exfoliated to 2D atomically thin layers. Therefore, this material offers a unique platform to explore the physics of valleytronic states with spontaneous spin and valley polarization in both bulk and 2D atomic crystals.

Original languageEnglish (US)
Pages (from-to)4683-4690
Number of pages8
JournalJournal of the American Chemical Society
Issue number8
StatePublished - Mar 1 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Layered Semiconductor Cr0.32Ga0.68Te2.33 with Concurrent Broken Inversion Symmetry and Ferromagnetism: A Bulk Ferrovalley Material Candidate'. Together they form a unique fingerprint.

Cite this