Lead-free piezoelectric ceramics and thin films

Ahmad Safari, Maryam Abazari

Research output: Contribution to journalArticlepeer-review

51 Scopus citations


Recent progress in lead-free piezoelectric ceramics and thin films with special emphasis on alkaline niobatebased and bismuth sodium titanate-based systems is reviewed concisely. Modifications of potassium sodium niobate (KNN) ceramics are presented and subsequent improvements in the electrical properties are summarized. Special attention is devoted to the phase diagram of the KNN system when a solid solution is formed with other perovskite niobates and titanates. Impact of A-site and B-site dopants on the electromechanical properties of KNN ceramics are distinguished in view of transition temperatures. It is shown that the addition of most A-site and B-site dopants reduces the transition temperatures and improves the piezoactivity at room temperature. This is attributed to the shift of polymorphic transition from tetragonal to orthorhombic phase in the vicinity of room temperature. In contrast, formation of a solid solution of KNN with 18 mol% AgNbO3 revealed a significant enhancement of properties without a notable change in the transition temperatures. Also, a bismuth sodium titanate (BNT) composition is introduced with particular emphasis on its binary and ternary derivatives. Moderate piezoelectric properties reported at the morphotropic phase boundaries, formed in BNT-based solid solutions are also represented. Advances on thin films based on these two compositions are evaluated and challenges involved with development of stoichiometric thin films with low leakage current are discussed.

Original languageEnglish (US)
Article number5587395
Pages (from-to)2165-2176
Number of pages12
JournalIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Issue number10
StatePublished - Oct 2010

All Science Journal Classification (ASJC) codes

  • Instrumentation
  • Acoustics and Ultrasonics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Lead-free piezoelectric ceramics and thin films'. Together they form a unique fingerprint.

Cite this