Learning Category-Level Manipulation Tasks from Point Clouds with Dynamic Graph CNNs

Junchi Liang, Abdeslam Boularias

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

This paper presents a new technique for learning category-level manipulation from raw RGB-D videos of task demonstrations, with no manual labels or annotations. Category-level learning aims to acquire skills that can be generalized to new objects, with geometries and textures that are different from the ones of the objects used in the demonstrations. We address this problem by first viewing both grasping and manipulation as special cases of tool use, where a tool object is moved to a sequence of key-poses defined in a frame of reference of a target object. Tool and target objects, along with their key-poses, are predicted using a dynamic graph convolutional neural network that takes as input an automatically segmented depth and color image of the entire scene. Empirical results on object manipulation tasks with a real robotic arm show that the proposed network can efficiently learn from real visual demonstrations to perform the tasks on novel objects within the same category, and outperforms alternative approaches.

Original languageEnglish (US)
Title of host publicationProceedings - ICRA 2023
Subtitle of host publicationIEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1807-1813
Number of pages7
ISBN (Electronic)9798350323658
DOIs
StatePublished - 2023
Event2023 IEEE International Conference on Robotics and Automation, ICRA 2023 - London, United Kingdom
Duration: May 29 2023Jun 2 2023

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2023-May
ISSN (Print)1050-4729

Conference

Conference2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Country/TerritoryUnited Kingdom
CityLondon
Period5/29/236/2/23

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Learning Category-Level Manipulation Tasks from Point Clouds with Dynamic Graph CNNs'. Together they form a unique fingerprint.

Cite this