Learning geographical preferences for point-of-interest recommendation

Bin Liu, Yanjie Fu, Zijun Yao, Hui Xiong

Research output: Chapter in Book/Report/Conference proceedingConference contribution

391 Scopus citations

Abstract

The problem of point of interest (POI) recommendation is to provide personalized recommendations of places of interests, such as restaurants, for mobile users. Due to its complexity and its connection to location based social net- works (LBSNs), the decision process of a user choose a POI is complex and can be influenced by various factors, such as user preferences, geographical influences, and user mobility behaviors. While there are some studies on POI recommendations, it lacks of integrated analysis of the joint effect of multiple factors. To this end, in this paper, we propose a novel geographical probabilistic factor analysis framework which strategically takes various factors into consideration. Specifically, this framework allows to capture the geographical influences on a user's check-in behavior. Also, the user mobility behaviors can be effectively exploited in the recommendation model. Moreover, the recommendation model can effectively make use of user check-in count data as implicity user feedback for modeling user preferences. Finally, experimental results on real-world LBSNs data show that the proposed recommendation method outperforms state- of-The-Art latent factor models with a significant margin.

Original languageEnglish (US)
Title of host publicationKDD 2013 - 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
EditorsRajesh Parekh, Jingrui He, Dhillon S. Inderjit, Paul Bradley, Yehuda Koren, Rayid Ghani, Ted E. Senator, Robert L. Grossman, Ramasamy Uthurusamy
PublisherAssociation for Computing Machinery
Pages1043-1051
Number of pages9
ISBN (Electronic)9781450321747
DOIs
StatePublished - Aug 11 2013
Event19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013 - Chicago, United States
Duration: Aug 11 2013Aug 14 2013

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
VolumePart F128815

Other

Other19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013
Country/TerritoryUnited States
CityChicago
Period8/11/138/14/13

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • Human mobility
  • Location-based social networks
  • Point-of-interest
  • Recom-mender systems
  • User profiling

Fingerprint

Dive into the research topics of 'Learning geographical preferences for point-of-interest recommendation'. Together they form a unique fingerprint.

Cite this