Lightweight microlattice with tunable mechanical properties using 3D printed shape memory polymer

Chen Yang, Manish Boorugu, Andrew Dopp, Howon Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Metamaterials are architected artificial materials engineered to exhibit properties not typically found in natural materials. Increasing attention has recently been given to mechanical metamaterials with unprecedented mechanical properties including high stiffness, strength, or/and resilience even at extremely low density. These unusual mechanical performances emerge from the three-dimensional (3D) spatial arrangement of the micro-structural elements designed to effectively distribute mechanical loads. Recent advances in additive manufacturing in micro-/nano- scale have catalyzed the growing interest in this field. This work presents a new lightweight microlattice with tunable and recoverable mechanical properties using a threedimensionally architected shape memory polymer (SMP). SMP microlattices were fabricated utilizing our micro additive manufacturing technique called projection microstereolithography (PμSL), which uses a digital micro-mirror device (DMDTM) as a dynamically reconfigurable photomask. We use a photo-crosslinkable and temperature-responsive SMP which can retain its large deformation until heated for spontaneous shape recovery. In addition, it exhibits remarkable elastic modulus changes during this transition. We demonstrate that mechanical responses of the micro 3D printed SMP microlattice can be reversibly tuned by temperature control. Mechanical testing result showed that stiffness of a SMP microlattice changed by two orders of magnitude by a moderate temperature shift by 60° C. Furthermore, the shape memory effect of the SMP allows for full restitution of the original shape of the microlattice upon heating even after substantial mechanical deformation. Mechanical metamaterials with lightweight, reversibly tunable properties, and shape recoverability can potentially lead to new smart structural systems that can effectively react and adapt to varying environments or unpredicted loads.

Original languageEnglish (US)
Title of host publicationAdditive Manufacturing; Bio and Sustainable Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)9780791851357
DOIs
StatePublished - 2018
EventASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 - College Station, United States
Duration: Jun 18 2018Jun 22 2018

Publication series

NameASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Volume1

Other

OtherASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018
Country/TerritoryUnited States
CityCollege Station
Period6/18/186/22/18

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Lightweight microlattice with tunable mechanical properties using 3D printed shape memory polymer'. Together they form a unique fingerprint.

Cite this