Linearization of Non-Uniform Quantizers via Adaptive Non-Subtractive Dithering

Morriel Kasher, Predrag Spasojevic, Michael Tinston

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Non-subtractive dithering is an effective method to improve quantizer performance by injecting input noise that reduces statistical correlations between input signals and quantization error. Existing non-subtractive dither theory has primarily designed dither signal distributions for linear, uniform quantizers, neglecting real-world non-idealities including non-uniformity and finite-level saturation. We develop a generalized analytical condition to guarantee independence of the quantization error moments from the input signal for an arbitrary finite-level non-linear quantizer characteristic. We use this to propose a novel asymmetric, adaptive dither technique for effective linearization of non-uniform quantizers via reduction of the first conditional quantization error moment. These adaptive dither distributions are shown to completely eliminate the first error moment in Lloyd-Max quantizers and significantly reduce it in non-linear quantizers. This allows the use of time-averaging to converge to an arbitrarily precise signal estimate in non-uniform quantizers.

Original languageEnglish (US)
Title of host publication2023 57th Annual Conference on Information Sciences and Systems, CISS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665451819
DOIs
StatePublished - 2023
Event57th Annual Conference on Information Sciences and Systems, CISS 2023 - Baltimore, United States
Duration: Mar 22 2023Mar 24 2023

Publication series

Name2023 57th Annual Conference on Information Sciences and Systems, CISS 2023

Conference

Conference57th Annual Conference on Information Sciences and Systems, CISS 2023
Country/TerritoryUnited States
CityBaltimore
Period3/22/233/24/23

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Hardware and Architecture
  • Information Systems
  • Artificial Intelligence
  • Information Systems and Management
  • Safety, Risk, Reliability and Quality

Keywords

  • analog-to-digital conversion
  • dithering
  • linearization
  • lloyd-max
  • non-linear
  • quantization

Fingerprint

Dive into the research topics of 'Linearization of Non-Uniform Quantizers via Adaptive Non-Subtractive Dithering'. Together they form a unique fingerprint.

Cite this