Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation

Yihong Zhan, Zhenning Cao, Ning Bao, Jianbo Li, Jun Wang, Tao Geng, Hao Lin, Chang Lu

Research output: Contribution to journalArticlepeer-review

44 Scopus citations


Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10 kHz-1 MHz. Based on Schwan equation, it was thought that with low ac frequencies (10 Hz-10 kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10 Hz-10 kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000 Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ∼ 71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery.

Original languageEnglish (US)
Pages (from-to)570-576
Number of pages7
JournalJournal of Controlled Release
Issue number3
StatePublished - Jun 28 2012

All Science Journal Classification (ASJC) codes

  • Pharmaceutical Science


  • Alternating current
  • Direct current
  • Electroporation
  • Frequency
  • Gene delivery

Fingerprint Dive into the research topics of 'Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation'. Together they form a unique fingerprint.

Cite this