TY - JOUR
T1 - Malondialdehyde in exhaled breath condensate and urine as a biomarker of air pollution induced oxidative stress
AU - Gong, Jicheng
AU - Zhu, Tong
AU - Kipen, Howard
AU - Wang, Guangfa
AU - Hu, Min
AU - Ohman-Strickland, Pamela
AU - Lu, Shou En
AU - Zhang, Lin
AU - Wang, Yuedan
AU - Zhu, Ping
AU - Rich, David Q.
AU - Diehl, Scott R.
AU - Huang, Wei
AU - Zhang, Junfeng
N1 - Funding Information:
We thank all the students and staff from Dr Tong Zhu and Dr Min Hu’s labs for their assistance in air pollution monitoring. This research was jointly funded by NIEHS (1R01 ES0158640, P30 ES05022, and 5P30ES007048) and the Health Effects Institute (4760-RPFA05-3). T.Z. is partly funded by Beijing Environmental Protection Agency (OITC-G08026056). The views expressed in this manuscript are solely of the authors and do not necessarily reflect those of the funding agencies.
PY - 2013/5
Y1 - 2013/5
N2 - Underlying mechanisms by which air pollutants adversely affect human health remain poorly understood. Oxidative stress has been considered as a potential mechanism that may promote lipid peroxidation by reactive oxygen species, leading to the formation of malondialdehyde (MDA) that is excreted in biofluids (e.g., urine and exhaled breath condensate (EBC)). A panel study was conducted to examine whether concentrations of MDA in EBC and urine were associated, respectively, with changes in air pollution levels brought by the Beijing Olympic air pollution control measures. EBC and urine samples from 125 healthy adults were collected twice in each of the pre-, during-, and post-Olympic periods. Period-specific means of MDA and changes in MDA levels associated with increases in 24-h average pollutant concentrations were estimated using linear mixed-effects models. From the pre- to the during-Olympic period, when concentrations of most pollutants decreased, EBC MDA and urinary MDA significantly decreased by 24% (P<0.0001) and 28% (P=0.0002), respectively. From the during-Olympic to the post-Olympic period, when concentrations of most pollutants increased, EBC MDA and urinary MDA increased by 28% (P=0.094) and 55% (P=0.046), respectively. Furthermore, the largest increases in EBC MDA associated with one interquartile range (IQR) increases in all pollutants but ozone ranged from 10% (95% CI: 2%, 18%) to 19% (95% CI: 14%, 25%). The largest increases in urinary MDA associated with IQR increases in pollutant concentration ranged from 9% (95%: 0.3%, 19%) to 15% (95% CI: 3%, 28%). These findings support the utility of EBC MDA as a biomarker of oxidative stress in the respiratory tract and urinary MDA as a biomarker of systemic oxidative stress in relation to air pollution exposure in healthy young adults. Both EBC and urine samples can be collected noninvasively in the general population.
AB - Underlying mechanisms by which air pollutants adversely affect human health remain poorly understood. Oxidative stress has been considered as a potential mechanism that may promote lipid peroxidation by reactive oxygen species, leading to the formation of malondialdehyde (MDA) that is excreted in biofluids (e.g., urine and exhaled breath condensate (EBC)). A panel study was conducted to examine whether concentrations of MDA in EBC and urine were associated, respectively, with changes in air pollution levels brought by the Beijing Olympic air pollution control measures. EBC and urine samples from 125 healthy adults were collected twice in each of the pre-, during-, and post-Olympic periods. Period-specific means of MDA and changes in MDA levels associated with increases in 24-h average pollutant concentrations were estimated using linear mixed-effects models. From the pre- to the during-Olympic period, when concentrations of most pollutants decreased, EBC MDA and urinary MDA significantly decreased by 24% (P<0.0001) and 28% (P=0.0002), respectively. From the during-Olympic to the post-Olympic period, when concentrations of most pollutants increased, EBC MDA and urinary MDA increased by 28% (P=0.094) and 55% (P=0.046), respectively. Furthermore, the largest increases in EBC MDA associated with one interquartile range (IQR) increases in all pollutants but ozone ranged from 10% (95% CI: 2%, 18%) to 19% (95% CI: 14%, 25%). The largest increases in urinary MDA associated with IQR increases in pollutant concentration ranged from 9% (95%: 0.3%, 19%) to 15% (95% CI: 3%, 28%). These findings support the utility of EBC MDA as a biomarker of oxidative stress in the respiratory tract and urinary MDA as a biomarker of systemic oxidative stress in relation to air pollution exposure in healthy young adults. Both EBC and urine samples can be collected noninvasively in the general population.
KW - The Beijing Olympics
KW - exhaled breath condensate
KW - lipid peroxidation
KW - malondialdehyde
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=84876756252&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84876756252&partnerID=8YFLogxK
U2 - 10.1038/jes.2012.127
DO - 10.1038/jes.2012.127
M3 - Article
C2 - 23321859
AN - SCOPUS:84876756252
SN - 1559-0631
VL - 23
SP - 322
EP - 327
JO - Journal of Exposure Science and Environmental Epidemiology
JF - Journal of Exposure Science and Environmental Epidemiology
IS - 3
ER -