Mapping soluble guanylyl cyclase and protein disulfide isomerase regions of interaction

Erin J. Heckler, Vladyslav Kholodovych, Mohit Jain, Tong Liu, Hong Li, Annie Beuve

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

Soluble guanylyl cyclase (sGC) is a heterodimeric nitric oxide (NO) receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI) interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT) and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the á or the β catalytic domain is proposed.

Original languageEnglish (US)
Article number0143523
JournalPloS one
Volume10
Issue number11
DOIs
StatePublished - Nov 1 2015

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint Dive into the research topics of 'Mapping soluble guanylyl cyclase and protein disulfide isomerase regions of interaction'. Together they form a unique fingerprint.

  • Cite this