Abstract
Alpha-Synuclein (α-Syn) is an important protein in the pathogenesis of Parkinson disease (PD) as it accumulates as fibrillar inclusions in affected brain regions including dopaminergic neurons in the substantia nigra. Elevated levels of α-Syn seem to be crucial in mediating its toxicity. Thus, detailed information regarding the regulatory mechanism of α-Syn expression in several layers such as transcription, post-transcription and post-translation is needed in order to devise therapeutic interventions for PD. Previously, we reported that expression of α-Syn is repressed by microRNA-7 (miR-7) through its effect on the 3′-untranslated region (UTR) of α-Syn mRNA. Here, we show that miR-7 also accelerates the clearance of α-Syn and its aggregates by promoting autophagy in differentiated ReNcell VM cells. Further, miR-7 facilitates the degradation of pre-formed fibrils of α-Syn transported from outside the cells. This additional mechanism for reducing α-Syn levels show miR-7 to be an important molecular target for PD and other alpha-synucleinopathies.
Original language | English (US) |
---|---|
Pages (from-to) | 118-123 |
Number of pages | 6 |
Journal | Neuroscience Letters |
Volume | 678 |
DOIs | |
State | Published - Jun 21 2018 |
All Science Journal Classification (ASJC) codes
- Neuroscience(all)
Keywords
- Alpha-Synuclein
- Autophagy
- MicroRNA-7
- Parkinson disease