Microscale mechanical behavior of the subsurface by finishing processes

Yuebin Guo, A. W. Warren

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Hard turning, grinding, and honing are common finishing processes in today's production. The machined subsurface undergoes severe deformation and possible microstructure changes in a small scale subsurface layer (<20 μm). Mechanical behavior of this shallow layer is critical for component performance such as fatigue and wear. Due to the small size of this region, mechanical behavior of this shallow layer is hard to measure using traditional material testing. With the nanoindentation method, mechanical behavior (nanohardness and modulus) at the microscale in subsurface was measured for AISI 52100 and AISI 1070 steel components machined by hard turning, grinding, and honing. The test results show that white layer increases nanohardness but decreases modulus of a turned surface. Nanohardness and modulus of the ground surface are slightly smaller than the honed one in the subsurface. However, grinding produces higher nanohardness and modulus in near-surface (<10 μm) than honing, while honing produces more uniform hardness and modulus in the near-surface and subsurface, and would improve component performance. Nanohardness and modulus of the machined near-surface are strongly influenced by strain hardening, residual stress, size-effect, and microstructure changes.

Original languageEnglish (US)
Pages (from-to)333-338
Number of pages6
JournalJournal of Manufacturing Science and Engineering, Transactions of the ASME
Volume127
Issue number2
DOIs
StatePublished - May 1 2005
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Industrial and Manufacturing Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Microscale mechanical behavior of the subsurface by finishing processes'. Together they form a unique fingerprint.

Cite this